MATH-6 PTB CH 3 PDF

We know that $\begin{array}{l} LCM \times HCF = Product \ of \ numbers \\ LCM = \frac{Product \ of \ numbers}{HCF} = \frac{2952 \times 2256}{24} \\ LCM = \frac{277488}{24} = 277488 \ Ans. \end{array}$

Q.10. The HCF and LCM of two numbers are 23 and 345. If one number is 115, find the other

Sol. We know that LCM \times HCF = Product of numbers Let the second number = x then $23 \times 345 = 115 \times x$

$$x = \frac{23 \times 345}{115} = 23 \times 3$$

x = 69 Other number = 36

Objective Exercise 3

Q.1. Answer the following questions

i. What is meant by the factor of a number?

Ans. A number that divides a given number exactly is called a factor of the given number.

ii. Define the prime numbers.

Ans. Those numbers which have only two factors are called prime number.

iii. Which number has only one factor?

Ans. 1 has only one factor.

iv. How do we tell if a number is divisible by 3?

Ans. If 3 divides a number exactly, it is divisible by 3.

v. What is meant by prime factorization?

Ans. If we factorize a number in such a way that its factors are prime numbers. This process is called prime factorization.

Q.8. Use the long division method to find L.C.M

ii. 324, 1053

3	324, 1053
3 .	108,351
3	36,117
3	12,39
4	4, 13
13	1, 13
The W	1, 1

 $= 3 \times 3 \times 3 \times 3 \times 4 \times 13$

= 4212 Ans.

н. 385, 1050, 1155

5	385, 1050, 1155
3	77, 210, 231
7	77, 70, 77
11	11, 10, 11
10	1, 10, 1
	1, 1, 1

 $=5\times3\times11\times7\times10$

= 11550 Ans.

iii. 52, 56, 112, 156

2	52, 56, 112, 156
2	26, 28, 56, 78
2	13, 14, 28, 39
3	13, 7, 14, 39
7	13, 7, 14, 13
2	13, 1, 2, 13
13	13, 1, 1, 13
	1, 1, 1, 1

 $=2\times2\times2\times2\times3\times7\times13=4368$ Ans

Q.9. The HCF of two numbers 2952 and 2256.

Sol. is 24. Find their LCM

Q.7. Use prime factorization method to find L.C.M

i.

3	75
5	25
5	5
-	1

2	120		_
2	60		
2	30		
3	15		
5	.5	*	1
95/05	1		

 $75 = 3 \times 5 \times 5 = 3 \times 5^{2}$ $120 = 2 \times 2 \times 2 \times 3 \times 5 = 23 \times 3 \times 5$ LCM of 75 & $120 = 3 \times 2^{3} \times 52$ $= 3 \times 8 \times 25 = 600$

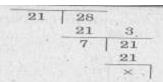
ii.

117
39
13

2	702	
3	351	
3	117	
3	39	
13	13	- 3
	1	

 $\begin{array}{c} 234 = 2 \times 3 \times 3 \times 13 = 2 \times 3^{2} \times 13 \\ 702 = 2 \times 3 \times 3 \times 3 \times 13 = 2 \times 3^{2} \times 13 \\ \text{LCM of } 234 \ \& \ 702 = 2 \times 3^{3} \times 13 \\ = 2 \times 27 \times 13 = 720 \end{array}$

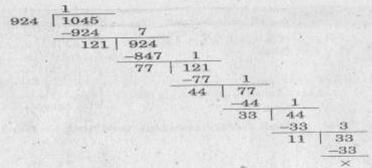
iii.


75		3
25	3	
5		15
	1	1.00

-
5
į

2	350	a
5	175	
5	35	

 $75 = 3 \times 5 \times 5 = 3 \times 5^{2}$ $125 = 5 \times 5 \times 5 = 5^{3}$ $350 = 2 \times 5 \times 5 \times 7$ L.C.M = $3 \times 2 \times 5^{3} \times 7$ = $3 \times 2 \times 125 \times 7 = 5250$ Ans.


H.C. F = 7 iii. 710, 1815, 945 Sol.

H.C. F = 5 Ans.

111. 33, 44, 77	2	33, 44, 77
Sol.	2	33, 22, 77
$=2\times2\times3\times7\times11$	3	33, 11, 77
$= 2^2 \times 3 \times 7 \times 11$ Ans.	7	11, 11, 77
	11	11, 11, 11
		1, 1, 1

Q.6. Use division method to find the H.C.F. i. 924, 1045 Sol.

H.C. F = 11ii. 1505, 2982 Sol.

iii.	7056	2	7056
Sol.		2	3528
===	$2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7 \times 7$	2	1764
=5	$2^4 \times 3^2 \times 7^2$	2	882
		3	441
		3	147
		7	49
3		7	7
			1
iv.	39204	.2	39204
Sol.		2	19602
2×2:	$\times 3 \times 3 \times 3 \times 3 \times 11 \times 11$	3	9801
$2^2 \times 3$	× 11 ² Ans.	3	3267
		3	1089
		3	363
		11	121
		11	11
			1
	Use prime factorization n H.C.F.	etho	od to find the
	48, 72	2	48, 72
Sol.		2	24, 36
= 2 × 2	$2 \times 2 \times 2 \times 3 \times 7$	2	12, 28
= 24 %		- 63	TOTAL PROPERTY OF THE PARTY OF
	3×7 Ans.	2	6, 14
	3 × 7 Ans.	3	6, 14
	3×7 Ans.		
	3×7 Ans.	3	3, 7
		7	3, 7 1, 7 1, 1
ı.	3 × 7 Ans.	3 7 2	3, 7 1, 7 1, 1
i. Sol.	70, 105	3 7 2 5	3, 7 1, 7 1, 1 70, 105 35, 105
ii. Sol.		3 7 2 5 7	3, 7 1, 7 1, 1 70, 105 35, 105 7, 21
ii. Sol.	70, 105	3 7 2 5	3, 7 1, 7 1, 1 70, 105 35, 105

Odd numbers less than 20 1, 3, 5, 7, 9, 11, 13, 15, 19 Prime numbers less than 20 2, 3, 5, 7, 11, 13, 17, 19 Composite numbers less than 20 4, 6, 8, 9, 10, 12, 14, 15, 16, 18 Q.3. Tell which of the following numbers are divisible by 2, 3 and 5 without carring division. Sol. Divisible by 2 6420, 5030, 4132, 20004, 45678, 32124 Divisible by 3 6420, 11115, 20004 Divisible by 5 6420, 7125, 5030, 11115 Q.4. Write the prime factors of the following numbers using index notation. 900 900 450 2 Sol. 225 $2 \times 2 \times 3 \times 3 \times 5 \times 5$ 3 more 3 75 $2^2 \times 3^2 \times 5^2$ ==> 25 5 5 5 11 1296 2 1296 ii. 648 2 Sol. $2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3$ 2 324 --> 2 162 24×34 => 3 81 27 3 3 9 3 3 1

Review Exercise '3'

Q.1. Write all numbers less than 40 which are

i. Multiples of 2 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38

ii. Multiples of 5 5, 10, 15, 20, 25, 30, 35

iii. Multipels of 7 7, 14, 21, 28, 35 iv. Multiples of 9 9, 18, 27, 36

Q.2. Write all even, odd, prime and composite numbers less than 20

Sol.

Even numbers less than 20 2, 4, 6, 8, 10, 12, 14, 16, 18

LCM = $2 \times 2 \times 2 \times 2 \times 3 \times 5 = 240$ They flash together after 240 seconds.

Q.10. Manahil wants to prepare some handkerchiefs of same size from a piece of cloth 9m long and 1.25m wide. What will be the largest size of the handkerchiefs when no wastage is allowed.

Sol.

9m= 9×100= 900cm, 1.25m=1.25×100= 125 cm

The largest size of handkerchief = (25 × 25) cm or 25cm by 25 cm

Q.8. There are 416, 364 and 312 students in three classes respectively. Buses are to be hired to take these students to a school trip. Find the maximum number of students who can sit in a bus if each bus carries an equal number of students.

Sol.

	1	
364	416	
	364	7
	52	364
		364
		×

= 52 students Ans.

Q.9. Three light houses flash their lights every 16 seconds, 24 second, and 40 seconds respectively. If they flash together at 2 p.m, at what time will they next flash together?

Sol.

2	16,24,40
2	8, 12, 20
2	4, 6, 10
2	2, 3, 5,
3	1, 3,5
5	1, 1, 5
	1 1 1

 $=2\times2\times2\times3\times3=72$

Hence, Ali can draw '72' square patterns to cover the paper completely.

Q.6. In a morning walk, three friends step off together. Their steps measure 70 cm, 76 cm and 90 cm respectively. At what distance from the starting point will they step off again together.

Sol.

2	70, 76, 90
2	35, 38, 45
5	35, 19, 45
3	7, 19, 9
3	7, 19, 3
7	7, 19, 1
.19	1, 19, 1
	1, 1, 1

 $= 2 \times 2 \times 5 \times 3 \times 3 \times 7 \times 19 = 23940$

Q.7. Two containers have 850 litres and 680 litres of milk respectively. Find the capacity of a container which can measure the milk in each container in exact number of times.

Sol.

2	850	
5	425	
8	85	
1.7	17	
	1	

一日 かちゅう

2 | 680 2 | 340 2 | 170 5 | 85 17 | 17

 $850 = 2 \times 5 \times 5 \times 7$ $680 = 2 \times 2 \times 2 \times 5 \times 7$ $HCF = 2 \times 5 \times 7 = 170$ Capacity of container = 170l.

(35)

$$=2\times2\times2\times3\times3=72$$

Hence, Ali can draw '72' square patterns to

cover the paper completely.

Q.6. In a morning walk, three friends step off together. Their steps measure 70 cm, 76 cm and 90 cm respectively. At what distance from the starting point will they step off again together.

Sol.

2	70, 76, 90
2	35, 38, 45
5	35, 19, 45
3	7, 19, 9
3	7, 19, 3
.7	7, 19, 1
-19	1, 19, 1
110-5	1, 1, 1

 $= 2 \times 2 \times 5 \times 3 \times 3 \times 7 \times 19 = 23940$

Q.7. Two containers have 850 litres and 680 litres of milk respectively. Find the capacity of a container which can measure the milk in each container in exact number of times.

Sol.

2	850	
5	425	
8	85	
17	17	
Jan	1	

2 680 2 340 2 170 85 5 17 17 1

 $850 = 2 \times 5 \times 5 \times 7$ $680 = 2 \times 2 \times 2 \times 5 \times 7$ $HCF = 2 \times 5 \times 7 = 170$

Capacity of container = 1701.

Q.4. Find the shortest length of a pipe that can be measured exactly with 4m, 6m and 9m long measuring tapes reportedly.

Q.5. The paper of a note book is 18cm by 24 cm. Ali wants in cover the paper completely with square pattern of the same size. Find i. The largest possible area of each square pattern.

ii. The number of square pattern that Ali can draw two cover the paper completely.

Sol.

Hence, '6cm2' is the largest possible area of each square pattern

ii.

.2	18, 24
2	9, 12
3	9,6
2	3, 2
3	3, 1
1777	1.1

Q.1. Find the smallest number that can exactly divide the numbers 108, 180 and 216.

 $2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5$ = 1080 Ans.

2.	108, 180, 216
2	54, 90, 108
3	27, 45, 54
3	9, 15, 18
3	3, 5, 6
2	1, 5, 2
5	1, 5, 1
	1, 1, 1

Q.2. Find the smallest number that is exactly divisible by 5, 15, 25

 $3 \times 5 \times 5 = 75$ Ans.

3	5, 15, 25
5	5, 5, 25
5	1, 1, 5
	1, 1, 1

Q.3. Find the greatest measure of a string that can measure exactly 27m, 45m and long wooden border exactly.

Sol.

To determine the greatest measure of string, we find HCF of given lengths.

3 27 3 9 3 3

3	45	
3	15	
5	5	100
ATT THE	4	

3	63	
3	21	
7	7	
N/ce	1	4,0

 $27 = 3 \times 3 \times 3$ $45 = 3 \times 3 \times 5$ $63 = 3 \times 3 \times 7$

So HCF of 27, 45, $63 = 3 \times 3 = 9$ So greatest measure = 9m.

Q.5. The LCM of two numbers 660 and 2100 is 23100. Find their HCF

Sol. . We know that

 $\begin{array}{l} LCM \times HCF = Product \ of \ two \ numbers \\ 23100 \times HCF = 660 \times 2100 \end{array}$

$$HCF = \frac{660 \times 2100}{23100}$$

HCF = 60

Q.6. The HCF and LCM of two numbers are 29 and 3045. If one of the numbers is 435, find the other.

Sol.

Let second number = xLCM × HCF = Product of two numbers $29 \times 3045 = 435 \times x$

$$\Rightarrow \qquad \mathbf{x} = \frac{29 \times 3045}{435}$$

x = 203

So the second number is 203.

Q.7. The HCF of two numbers is 16 and their product is 3328. Find their LCM.

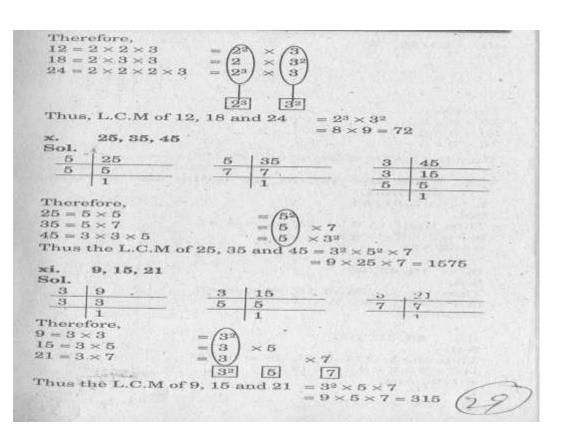
Sol.

We know that LCM × HCF = Product of two number LCM × 16 = 3328

$$LCM = \frac{3328}{16}$$

LCM = 208

iv.	210, 140, 315	2	210, 140, 315
Sol.		5	105, 70, 315
Thus	the L.C.M of 210, 140 and	3	21, 14, 63
315 =	$2 \times 2 \times 3 \times 3 \times 5 \times 7$	7	7, 14, 21
	0 Ans.	2	1, 2,3
		3	1, 1, 3
			1, 1, 1
v.	112, 120, 150	2	112, 120, 150
Sol.		2	56, 60, 75
Thus	the L.C.M of 112, 120 and	2	28. 30, 75
150 =	2×2×2×2×3×3×5×5×7	2	14, 15, 75
= 252	00 Ans.	5	7, 15, 75
4		3	7, 3, 5
	Way and the same of the same o	5	7, 1, 5
		7	7, 1, 1
			1, 1, 1
vi.	144, 180, 300	2	144, 180, 300
Sol.		2	72, 90, 150
Thus	the L.C.M of 144, 180 and	2	36, 45, 75
300 =	= 2×2×2×2×3×3×5×5	2	18, 45, 75
= 360	00 Ans.	3	9, 45,75
		3	3, 15, 25
		5	1, 5, 25
		5	
		MIG	1, 1, 1
F			MAN


Q.4. The HCF of two numbers 525 and 1155 is 105. Find the LCM

Sol.

We know that L.C.M \times HCF = Product of two numbers LCM \times 105 =525 \times 1155 LCM = $\frac{525 \times 1155}{105}$ = 1155 \times 5 \Longrightarrow LCM = 5775

xii. 25, 50, Sol.				A THE STATE OF THE
5 25	2	50	3	75
5 5	5	25	5	25
1	. 5	5	5	5
1.		1		1
Therefore,				
$25 = 5 \times 5$	$= \sqrt{5^2}$	The state of		
$50 = 2 \times 5 \times 5$	$= 5^2 $	×2		
$75 = 3 \times 5 \times 5$	C. Artista	×3		
		0 and 75 - 5	2 × 3 ×	2
Thus the L.C	IVI OI 25, 5	- 9	5 × 3	× 2 = 150
		M/ Inc. mei	ng t	he division
C.3. Find	the L.C.	IVI Dy usi	mg .	he division
meth			3	27, 81, 54
i. 27, 8	1,54		3	9, 27, 18
Sol.		01 and 54	-	3, 9, 6
Thus the L	.C.M of 24	MI and D4		0,0,0
THUS but		, 81 and 54	C. Carbon, No.	Name and Publishers a
is $3 \times 3 \times 3$	$\times 3 \times 2$		3	1, 3, 2
is $3 \times 3 \times 3$ = 162 Ans.	×3×2		C. Carbon, No.	1, 3, 2
is $3 \times 3 \times 3$	×3×2		3 2	1, 3, 2 1, 1, 2 1, 1, 1
is $3 \times 3 \times 3$ = 162 Ans.	× 3 × 2 15, 63		3 2 3	1, 3, 2 1, 1, 2 1, 1, 1 18, 45, 63
is 3 × 3 × 3 = 162 Ans. ii. 18, 4	×3×2 15,63		3 2 3	1, 3, 2 1, 1, 2 1, 1, 1 18, 45, 63 6, 15, 21
is 3 × 3 × 3 = 162 Ans. ii. 18, 4 Sol. Thus the 1	×3×2 15,63 L.C.M of 1		3 2 3 3 2	1, 3, 2 1, 1, 2 1, 1, 1 18, 45, 63 6, 15, 21 2, 5, 7
is 3 × 3 × 3 = 162 Ans. ii. 18, 4	×3×2 15,63 L.C.M of 1	8, 45 and 6	3 2 3 3 2 5	1, 3, 2 1, 1, 2 1, 1, 1 18, 45, 63 6, 15, 21 2, 5, 7 1, 5, 7
is 3 × 3 × 3 = 162 Ans. ii. 18, 4 Sol. Thus the 1	×3×2 15,63 L.C.M of 1 ×5×7		3 2 3 3 2	1, 3, 2 1, 1, 2 1, 1, 1 18, 45, 63 6, 15, 21 2, 5, 7 1, 5, 7 1, 1, 7
is 3 × 3 × 3 = 162 Ans. ii. 18, 4 Sol. Thus the 1 is 3 × 3 × 2	×3×2 15,63 L.C.M of 1 ×5×7		3 2 3 3 2 5 7	1, 3, 2 1, 1, 2 1, 1, 1 18, 45, 63 6, 15, 21 2, 5, 7 1, 5, 7 1, 1, 7 1, 1, 1
is $3 \times 3 \times 3$ = 162 Ans. ii. 18, 4 Sol. Thus the lis $3 \times 3 \times 2$ = 630 Ans.	$\times 3 \times 2$ 15, 63 L.C.M of 1 $\times 5 \times 7$		3 2 3 3 2 5 7	1, 3, 2 1, 1, 2 1, 1, 1 18, 45, 63 6, 15, 21 2, 5, 7 1, 5, 7 1, 1, 7 1, 1, 1 35, 55, 100
is 3 × 3 × 3 = 162 Ans. ii. 18, 4 Sol. Thus the l is 3 × 3 × 2 = 630 Ans. iii. 35,	×3×2 15, 63 L.C.M of 1 ×5×7 55, 100	8, 45 and 6	3 2 3 3 2 5 7	1, 3, 2 1, 1, 2 1, 1, 1 18, 45, 63 6, 15, 21 2, 5, 7 1, 5, 7 1, 1, 7 1, 1, 1 35, 55, 100 35, 55, 50
is 3 × 3 × 3 = 162 Ans. ii. 18, 4 Sol. Thus the l is 3 × 3 × 2 = 630 Ans. iii. 35, Sol. Thus the	×3×2 15, 63 L.C.M of 1 ×5×7 55, 100 L.C.M of 3	8, 45 and 6	3 2 3 3 2 5 7 2 2 2 00 5	1, 3, 2 1, 1, 2 1, 1, 1 18, 45, 63 6, 15, 21 2, 5, 7 1, 5, 7 1, 1, 7 1, 1, 1 35, 55, 100 35, 55, 50 35, 55, 25
is 3 × 3 × 3 = 162 Ans. ii. 18, 4 Sol. Thus the l is 3 × 3 × 2 = 630 Ans. iii. 35, Sol. Thus the	×3×2 15, 63 L.C.M of 1 ×5×7 55, 100 L.C.M of 3	8, 45 and 6	3 2 3 3 2 5 7 2 2 2 5 5 5	1, 3, 2 1, 1, 2 1, 1, 1 18, 45, 63 6, 15, 21 2, 5, 7 1, 5, 7 1, 1, 7 1, 1, 1 35, 55, 100 35, 55, 50 35, 55, 25 7, 11, 5
is 3 × 3 × 3 = 162 Ans. ii. 18, 4 Sol. Thus the l is 3 × 3 × 2 = 630 Ans. iii. 35,	×3×2 15, 63 L.C.M of 1 ×5×7 55, 100 L.C.M of 3 2×5×7×	8, 45 and 6	3 2 3 3 2 5 7 2 2 2 0 5 5 7	1, 3, 2 1, 1, 2 1, 1, 1 18, 45, 63 6, 15, 21 2, 5, 7 1, 5, 7 1, 1, 7 1, 1, 1 35, 55, 100 35, 55, 50 35, 55, 25 7, 11, 5 7, 11, 1
is $3 \times 3 \times 3$ = 162 Ans. ii. 18, 4 Sol. Thus the l is $3 \times 3 \times 2$ = 630 Ans. iii. 35, Sol. Thus the l is $5 \times 2 \times 3$	×3×2 15, 63 L.C.M of 1 ×5×7 55, 100 L.C.M of 3 2×5×7×	8, 45 and 6	3 2 3 3 2 5 7 2 2 2 5 5 5	1, 3, 2 1, 1, 2 1, 1, 1 18, 45, 63 6, 15, 21 2, 5, 7 1, 5, 7 1, 1, 7 1, 1, 1 35, 55, 100 35, 55, 50 35, 55, 25 7, 11, 5 7, 11, 1

vii. 45, 75

Sol.

3	45	
3	15	
5	5	

3	75	
5	25	7.14.15
5	5	Line Control
11111111	1 1	91905

Therefore,

$$45 = 3 \times 3 \times 5$$

$$75 = 3 \times 5 \times 5$$

= (32)	×
=(3)	×
32	

Thus the L.C.M of 45 and 75= $3^2 \times 5^2$

$$= 9 \times 25 = 225$$

viii. 36, 84

Sol.

2	36
2	18
3	9
3	3
	1

 $36 = 2 \times 2 \times 3 \times 3$

$$84 = 2 \times 2 \times 3 \times 7$$

× 7

Thus the L.C.M of 36 and $84=22\times32\times7$

$$=4\times9\times7=252$$

ix. 12, 18, 24

Sol.

2	12
- 2	6
3	3
1776	1

2	18
3	9
3	3

2	24
2.	12
2	6
3	3

Thus the L.C.M of 28 and $44 = 2^2 \times 7 \times 11$ = $4 \times 7 \times 11 = 308$

v. 20, 32 Sol.

2	20
2	10
5	5
	1

2	32
2	16
3	8
3	4
2	2
	1

Therefore,

$$20 = 2 \times 2 \times 5$$

$$32 = 2 \times 2 \times 2 \times 2 \times 2$$

× 5

Thus the L.C.M of 20 and $32=2^5\times 5$

$$= 32 \times 5 = 160$$

vi. 20, 135

Sol.

2	20
2	10
5	5
	1

5	135
3	27
2	9
2.	3
3 8	1

Therefore,

$$20 = 2 \times 2 \times 5$$

$$135 = 5 \times 3 \times 3 \times 3$$

Thus the L.C.M of 20 and $135 = 2^2 \times 3^3 \times 5$

$$=4\times27\times5=540$$

Therefore,

$$16 = 2 \times 2 \times 2 \times 2$$

 $40 = 2 \times 2 \times 2 \times 5$

$$= \begin{pmatrix} 2^4 \\ 2^3 \end{pmatrix} \times 5$$

$$= \begin{pmatrix} 2^4 \\ 2^4 \end{pmatrix} \times 5$$

Thus the L.C.M of 16 and $40 = 2^4 \times 5 = 16 \times 5 = 80$ 30, 36 iii. Sol.

2	30	11 0
3	15	
5	5	
	1	

Therefore,
$$30 = 2 \times 3 \times 5$$

 $36 = 2 \times 2 \times 3 \times 3$

$$\stackrel{=}{=} \begin{pmatrix} 2 & \times & 3 \\ 2^2 & \times & 3^2 \end{pmatrix} \times 5$$

$$\stackrel{=}{=} \begin{pmatrix} 2 & \times & 5 \\ 2^2 & \times & 3^2 \end{pmatrix} \times 5$$

Thus the L.C.M of 30 and $36 = 2^2 \times 3^2 \times 5$ $. = 4 \times 9 \times 5 = 180$

28, 44 iv. Sol.

2	28
2	14
7	7
	1

Therefore, $28 = 2 \times 2 \times 7$

$$28 = 2 \times 2 \times 7$$

$$44 = 2 \times 2 \times 11$$

$$= \begin{pmatrix} 2^2 & \times \\ 2^2 & \times \\ \end{pmatrix}$$

11 11

Q.2. Find the L.C.M of the following numbers by prime factorization method.

18, 24

Sol.

2 | 18 3 | 9 3 | 3 1

2	24
2	12
2	6
3	3
	1

Therefore, $18 = 2 \times 3 \times 3$ $24 = 2 \times 2 \times 2 \times 3$

$$= \begin{pmatrix} 2 \\ 2^3 \end{pmatrix} \times \begin{pmatrix} 3^2 \\ 3 \end{pmatrix}$$

$$= \begin{pmatrix} 2^3 \\ 2^3 \end{pmatrix} \times \begin{pmatrix} 3^2 \\ 3 \end{pmatrix}$$

Thus the L.C.M of 18 and 24 is $2^3 \times 3^2 = 8 \times 9 = 72$ Sol. 16, 40

2	16
_2	8
2	4
2	2
	1


```
vi. 8, 12
Sol.
Multiples of 8 = 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, .....
                             . , 00, 12, 84, .....
Multiples of 12=12, 24.
Common multiples of 5, 12 are 24, 48, 72, ......
Therefore, L.C.M of 8 and 12 is 24.
vii. 7, 14
Sol.
Multiples of 7 = 7, 14, 21, 28, 35, 42, 49, 56, ......
Multiples of 14 = 14, 28, 42, 56, 70, 84, ......
Common multiples of 7 and 14 are 14, 28, 42, 56, .....
Therefore, L.C.M of 7 and 14 is 14.
viii. 10, 15
 Sol.
 Multiples of 10 = 10,20,30,40,50,60,70,80,90,100,...
 Multiples of 15 = 15,30,45,60,75,90,105,120,135, .......
 Common multiples of 10 and 15 are 30, 60, 90, .....
 Therefore, L.C.M of 10 and 15 is 30
        3, 6, 9
 ix.
 Sol.
 Multiples of 3 = 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, .....
 Multiples of 6 = 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, .....
 Multiples of 9 = 9, 18, 27, 36, 45, 54, 63, 72, 81, ......
 Common Multiples of 3, 6 and 9 is 18
 Therefore, L.C.M of 3, 6 and 9 is 18.
        2, 6, 9
 x.
  Sol.
  Multiple of 2 = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, ...
  Multiples of 6 = 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, ....
  Multiples of 3 = 3, 6, 9, 12, 18, 21, 24, 27, \dots
  Common Multiples of 2, 6 and 9 is 18
  Therefore, L.C.M of 2, 6 and 9 is 18.
  xi.
         4, 8, 12
  Sol.
  Multiple of 4 = 4, 8, 12, 16, 20, 24, 28, 32, 36, ...
```

Exercise 3.5

Q.1. Find the L.C.M of given numbers by finding their common multiples. i. 2, 4 Sol. Multiples of 2 = 2, 4, 6, 8, 10, 12, 14, 16, Multiples of 4 = 4, 8, 12, 16, 20, 24, 28, Common multiples of 2 and 4 are 4, 8, 12, 16 Therefore, L.C.M of 2 and 4 is '4' ii. 5, 6 Sol. Multiples of 5 = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, Multiples of 6 = 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66.... Common multiples of 5 and 6 are 30, 60, Therefore, L.C.M of 5 and 6 is '30'. iii. 3, 4 Sol. Multiples of 3 = 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, Multiple of 4 = 4, 8, 12, 16, 20, 24, 28, 32, 36, Common multiples of 3 and 4 are 12, 24, Therefore, L.C.M of 3 and 4 are '12' iv. 7, 8 Sol. Multiples of 7 = 7, 14, 21, 28, 35, 42, 56, 63, Multiples of 8 = 8, 16, 24, 32, 40, 48, 56, 64, , Common multiple of 7, 8 is 56 Therefore, L.C.M of 7 and 8 is '56' V. 6, 9 Multiples of 6 = 6, 12, 18, 24, 30, 36, 42, 48, 54, Multiples of 9 = 9, 18, 27, 36, 45, 54, 63, Common multiples of 6 and 9 are 36, 56, Therefore, L.C.M of 6 and 9 is 36.

```
vii. 234, 538, 678
Sol.
 538 678
      -538
       140 538
            -420
            118
                  140
                  -118
                        3
                  32
                       118
                       -96
                       22
                            32
                            -22
                            10
                                22
                                -20
                                     10
```

H.C. F of 538 and 678 is 2

Therefore 2 is H.C.F of 234, 538, 678

-10 ×

v.405, 513 Sol.

H.C. F = 27 vi.128, 340 Sol.

ii.63, 112 Sol.

H.C. F = 7 iii.276, 161 Sol.

H.C. F = 23 iv.314, 334 Sol.


```
viii. 22, 55, 110
Sol.
                                                110
                            55
       22
  2
                                                55
 11 11
                      11
                            11
                                           11 11
       1
                            1
                                                1
                                 110 = 2 \times 5 \times 11
22 = 2 \times
            11
                                 H.C.F = 11
55 = 5 \times
           11
       56, 189, 175
ix.
Sol.
                                                 175
                            189
      56
                                            5
                       3
   2
  2
                                            5
                                                 35
                       3
       28
                            63
                       3
                                            7
                                                 7
                            21
        14
                       7
   7
                            7
        7
                                  175 = 5 \times 5 \times
                                                  7
56 = 2 \times 2 \times 2 \times 7
                                  H.C.F = 7
```

 $189 = 3 \times 3 \times 3 \times 7$

Q.4. Find the H.C.F of the following numbers, using the Long division method.

i.72, 184 Sol.

v. 22, 132

Sol.

2	22
11	11
	1

2	132
3	66
3	33
11	11
	1

 $22 = 2 \times 11$ $132 = 2 \times 2 \times 3 \times 11$

 $H.C.F = 11 \times 2 = 22$

Ans.

vi. 60, 72

Sol.

2	60
2	30
3	15
5	5
	1

2	72
2	36
2	18
3	9
3	3
	1

 $60 = 2 \times 2 \times 3 \times 5$

 $72 = 2 \times 2 \times 2 \times 3 \times 3$

 $H.C.F = 2 \times 2 \times 3 = 12$

vii. 16, 54, 84

Sol.

	2	16
	2	8
	2	4
	2	2
	6	1
10	6 = 5	$2 \times 2 \times 2 \times 2$

2	54
3	27
3	9
3	3
	1

2	84	
2	42	-
3	21	1
7	7	
	1	

 $54 = 2 \times 3 \times 3 \times 3$ $84 = 2 \times 2 \times 3 \times 7$ H.C.F = 2

22, 55 ii.

Sol.

2	22	
11	11	
	1	13)

5 55 11 11 1

 $12 = 2 \times 11$

$$18 = 5 \times 11$$

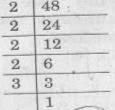
$$H.C.F = 11$$

36, 54 iii. Sol.

2	36
2	18-
3	9
3	3
Year	1

 $36 = 2 \times 2 \times 3 \times 3$

$$54 = 2 \times \times 3 \times 3 \times 3$$


$$H.C.F = 2 \times 3 \times 3 = 18$$

iv. 24, 48

Sol.

2	24	
2	12	M
2	6	4
3	3	UH:
	1	THE ST

$$24 = 2 \times 2 \times 2 \times 3$$

 $48 = 2 \times 2 \times 2 \times 2 \times 3$
H.C.F = $2 \times 2 \times 2 \times 3 = 24$

12, 33 iv. Sol. 12 = (1, 2, /3), 4, 6, 12 33 = 1, 3, 11, 33 Common factors = 1, 3 H.C.F of 12 and 33 = 3v. 39, 52 Sol. 39 = 1, 3, (13), 3952 = 1, 2, 4, 13, 26, 52 Common factors = 1, 13 H.C.F of 39 and 52 = 13vi. 16, 20 Sol. 16 = (1) (2) (4), 8, 16 20 = 1/, 2/, 4/, 5, 10, 20 Common factors= 1, 2, 4 H.C.F of 16 and 20 = 4

vii. 4, 6, 10 Sol.

$$\begin{array}{c} 4 = \begin{pmatrix} 1 \\ 6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \end{pmatrix}, 4 \\ 2 \end{pmatrix}, 2, 6 \\ 5, 10 \end{array}$$

Common factors = 1, 2 H.C.F of 4, 6 and 10 = 2 viii. 22, 44,66 Sol.

$$\begin{array}{c} 22 = \begin{pmatrix} 1 \\ 44 = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 2 \\ 3 \\ 4, \begin{pmatrix} 1 \\ 11 \\ 11 \\ 33, 66 \end{pmatrix}, 22 \\ 22, 44 \\ 33, 66 \end{array}$$

Common factors=1,2, 11 H.C.F of 22,44 and 66=11 ix. 35, 20, 45 Sol.

$$\begin{array}{c} 35 = \begin{pmatrix} 1 \\ 1 \\ 20 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ 2 \ , 4, \begin{pmatrix} 5 \\ 5 \\ 10, 20 \\ 5 \end{pmatrix}, \begin{array}{c} 7, 35 \\ 10, 20 \\ 9, 15, 45 \end{array}$$

Common factors = 1, 5 H.C.F of 35,20 and 45=5

Q.3. Find the H.C.F of the following numbers, using the prime factorization method.

i. 12, 18 Sol.

2	12
2	6
3	3
	1

$$12 = 2 \times 2 \times 8$$

 $18 = 2 \times 3 \times 3$
H.C.F = $2 \times 3 = 6$


```
10 and 15
iii.
      The factors of 10 are = (1), 2,(3),10
Sol.
      The factor of 15 are =
                                  1, 3, 5, 15
      The common factors of 10 and 16 are 1 and 5.
       12 and 18
iv.
Sol. The factors of 12 are =
                                              6, 9, 18
      The factor of 18 are =
      The common factors of 12 and 8 are 1,2,3 and 6.
       20 and 30
V.
Sol. The factors of 20 are =[1], [2], 4,5),
      The factor of 30 are = 1,2,3 5 6, 10, 15, 30 \Rightarrow The common factors of 20 and 30 are 1,2,5
              and 10.
       28 and 36
vi.
Sol. The factors of 28 are=1,2, 4,7, 14, 28
                                 , 2 , 3 , 4 , 6, 9, 12, 18, 36
       The factor of 36 are = 1
      The common factors of 28 and 36 are 1,2 and 4.
Q.2. Find H.C.F by writing the common
       factors of each number.
       24, 36
 i.
 Sol.
 36 = (1),(2),(3),(4),(6), 9,(12), 18, 36
 Common factors = 1, 2, 3, 4, 6, 12
 H.C.F of 12 and 36 = 12
                                 iii.
         25, 45
 ii.
                                 Sol.
 Sol.
 45 = 1, 3, 5, 9, 15, 45
                                  Common factors = 1, 7
 Common factors = 1, 5
 H.G.F of 25 and 45 = 5
                                  H.C.F of 21 and 49 = 7
```

Exercise 3.4

Q.1. Find all the common factors of

6 and 10

The factors of 6 are = $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$, 6 The factor of 10 are = $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$, 5 The common factors of 6 and 10 are 1 and 2. Sol. The factors of 6 are =

ii. 8 and 12 ·

Sol. The factors of 8 are = The factor of 12 are =

The common factors of 8 and 12 are 1, 2 and 4.

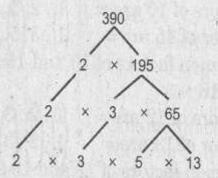
Exercise 3.4.

Q.1. Find all the common factors of

i. 6 and 10

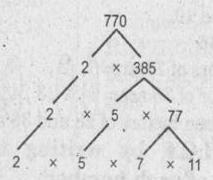
Sol. The factors of 6 are = (1), (2), (3), (4). The factor of 10 are = (1), (2), (3), (4)

⇒ The common factors of 6 and 10 are 1 and 2.


ii. 8 and 12 ·

Sol. The factors of 8 are = (1, 2), (4, 8)The factor of 12 are = (1, 2), (4, 6, 12)

> The common factors of 8 and 12 are 1, 2 and 4.



vii. 390 Sol.

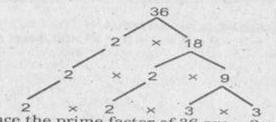
Hence, the prime factors of 390 are $= 2 \times 3 \times 5 \times 13$ Ans.

viii. 770 Sol.

Hence, the prime factors of 770 are $= 2 \times 5 \times 7 \times 11$ Ans.

iii. 60 Sol. Hence the prime factors f 60 are = $2 \times 2 \times 3 \times 5$ $=2^2 \times 3 \times 5$ Ans. 72 iv. Sol. Hence, the prime factor of 72 are = $2 \times 2 \times 2 \times 3 \times 3$ $= 2^3 \times 3^2$ Ans. . 108 v. Sol. Hence, the prime factors of 108 are $=2\times2\times3\times3\times3=2^2\times3^3$ Ans. vi. 462 Sol. Hence the prime factors of 462 are $= 2 \times 3 \times 7 \times 11$ Ans.

$2 \times 3 \times 7 \times 7 \times 7$	7	7
$= 2 \times 3 \times 7^3$ Ans.		1
xii. 1248	2	1248
Sol.	2	624
Hence the prime factors of 1248	2	312
are:	2	156
$2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 13$ = $2^5 \times 3 \times 13$ Ans.	2	78
$= 2^{\circ} \times 3 \times 13$ Ans,	3	39
	13	13
	1	1


Q.4. Factorize the following numbers into prime factors by using factor tree method.

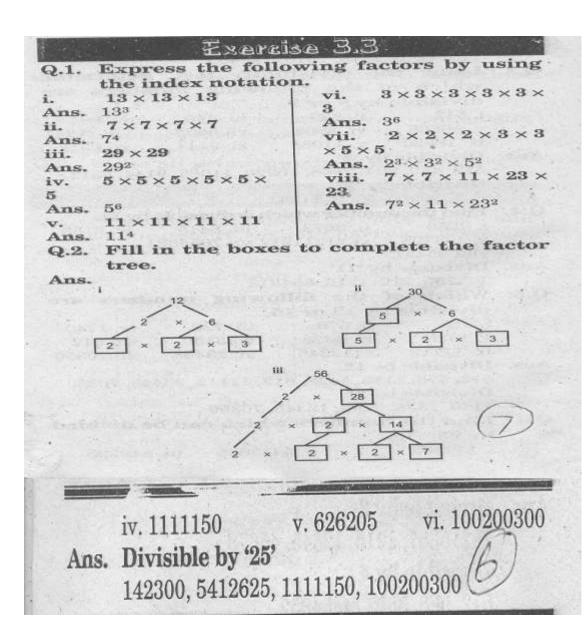
i. 24

Sol.

Hence the prime factors of 24 are = 2×2 $\times 2 \times 3$ = $2 \times 2^2 \times 3$ Ans. ii. 36 Sol.

2 × 12 2 × 2 × 6 2 × 2 × 3

Hence the prime factor of 36 are = $2 \times 2 \times 3 \times 3$ = $2^2 \times 3^2$ Ans.



rii. 256	2	256
iol.	2	128
Hence the prime factors of 256 are:	2	64
\times 2	2	32
= 28 Ans.	2	16
	2	8
	2	4
	2	2
		1
viii. 392	2	392
Sol.	2	196
Hence the prime factors of 392 are:	2	98
$2 \times 2 \times 2 \times 7 \times 7 = 2^2 \times 7^2 \times 2$ Ans.	7	49
	7	7
	Hid	1
x. 5250	2	5250
Sol.	5	2625
Hence the prime factors of 5250	5	525
are:	5	105
$2 \times 3 \times 5 \times 5 \times 5 \times 7$	3	21
$=2\times3\times5^2\times5\times7$	7	7
$= 2 \times 3 \times 5^3 \times 7$ Ans.		1 2014
2310	2	1 2310
x. 2310 Sol.	5	1155
Hence the prime factors of 2310	3	231
are:	7	77
$= 2 \times 3 \times 5 \times 7 \times 11 \text{ Ans.}$	11	
= 4 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1	-	- 1
· news	2	
xi. 2058	- 5	
Sol.		The second secon
Hence the prime factors of 205		7 49
are:	-	40

.

Q.3. Find the prime factors of the following numbers by using division method.

numbers by using divisi	on	method.
i. 20	2	20 3
Sol.	2	10
Hence the prime factors of 20 are:	5	5
$2 \times 2 \times 5 = 2^2 \times 5$ Ans.		1
ii. 36	2	36
Sol.	2	18
Hence the prime factors of 36 are:	3	9
$2 \times 2 \times 3 \times 3 = 2^2 \times 3^2$ Ans.	3	3
	1	1
iii. 98	2	98
Sol.	7	49
Hence the prime factors of 98 are:	7	7
$2 \times 7 \times 7 = 2 \times 7^2$ Ans.		1
iv. 225	3	225
Sol.	3	75
Hence the prime factors of 225 are:	5	25
$3 \times 3 \times 5 \times 5 = 3^2 \times 5^2 \times 13$ Ans.	5	5
		1
v. 216	3	216
Sol.	3	72
Hence the prime factors of 216 are:	3	24
$3 \times 3 \times 3 \times 2 \times 2 \times 2$	2	8
$=3^2\times2^2$ Ans.	2	4
	2	2
		1
vi. 441	3	441
Sol.	3	147
Hence the prime factors of 441 are:	7	49
$3 \times 3 \times 7 \times 7 = 3^2 \times 7^2 \text{ Ans.}$	7	7
		1

Ans. Divisible by 3 762, 5361, 1215, 12345, 45678 Divisible by 4 512, 968, 3692 and 4952. Divisible by 5 110, 1215, 7310, 1010, 12345 Q.3. Using the divisibility test, determine which of the following numbers are divisible by 8 or 9. i. 512 ii. 333 iii. 440 iv. 904 v. 56565 vi. 2968 vii.6669 viri.11241 ix. 16920 x. 11088 xi. 9144 xii.6312 Ans. Divisible by '8' 512, 440, 904, 2968, 16920, 11088, 9144, 6312. Divisible by '9' 333, 56565, 6669, 11241 Q.4. Find the number which is divisible by 11. i. 2550 ii. 3673 iii. 8415 iv. 5155 v. 135795 vi.21211212 vii.7654321 viii. 654313 Ans. Divisible by '11' 135795, 21211212, 654313 Q.5. Which of the following numbers are divisible by 12 or 15. i. 312 ii. 576 iii. 729 iv. 1140 v. 1335 vi. 4428 vii.3150 viii.612 ix. 11112 x. 12345 xi. 23448 xii.70350 Ans. Divisible by 12. 312, 576, 1140, 4428, 612, 11112, 23448, 7035, Divisible by 15 1140, 1335, 3150, 12345, 70350 Q.6. Find the numbers which can be divided by 25.

ii. 5412625

iii. 810235

i. 142300

Exercise 3.2

Q.1. Separate the following into even and odd numbers without carrying division.

i. 6423 ii. 8321 iii. 6254 iv. 989 v. 810 vi. 8394 vii.1234 viii.1357 ix. 54321 x. 86420 xi. 99880 xii.30005

Ans.

Even Numbers	Odd Numbers		
6254	6423		
810	8321		
8394	989		
1234	1357		
86420	54321		
99880	30005		

Q.2. Which of the following numbers are divisible by 3, 4 and by 5.

i. 762 ii. 512 iii. 110 iv. 968 v. 3692 vi. 5361 vii.1215 viii.7310 ix. 1010 x. 12345 xi. 4952 xii.45678

Q.6. List all numbers less than 50 which are multiples of 3 and 4. Ans. Multiples of 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48 Multiples of 4:4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48 Q.7. Write all composite numbers less than 20.

Ans. 4, 6, 8, 9, 10, 12, 14, 15, 16, 18

composite Q.8. Write five consecutive numbers just below 50.

Ans. 44, 45, 46, 48, 50

Q.9. Write all prime numbers less than 15(3)

Ans. 2, 3, 5, 7, 11, 13

```
iv.
       99
 Sol.
       The factor of '99' are 1, 3, 9, 11, 33, 99
 Q.2. Write first five multiples of each of the
       following numbers
       3
                             iii.
Sol: 3, 6, 9, 12, 15
                             Sol. 9, 18, 27, 36, 45
ii
       5
                             iv.
                                   12
Sol. 5, 10, 15, 20, 25
                             Sol. 12, 24, 36, 48, 60
Q.3. Separate the odd and even numbers
      i.
             135
                               342
                         ii.
                                     iii.
                                          11112
      iv.
            5008
                        v.
                               9427 vi.
                                           8134
      vii.
            10006
                        viii.
                              78965
Answers:
Odd numbers
      i. 135
                  v. 9427
                               viii. 78965
Even numbers
      ii. 342
                  iii. 1112
                            iv. 5008
                                           vi. 8134
      vii. 10006
Q.4. List all the prime numbers between;
      i.
             10 and 50
                              ii.
                                     25 and 60
      iii.
            32 and 48
                              iv.
                                     76 and 90
Answers:
      11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47
i. .
ii.
      29, 31, 37, 41, 43, 47, 53, 59.
iii.
      37, 41, 43, 47
iv.
      79, 83, 89
Q.5. List all numbers less than 100 which
      are multiples of 5 and 10.
Ans. Multiples of 5: 5, 10, 15, 20, 25, 30, 35, 40, 45,
     50, 55, 60, 65, 70, 75, 80, 85, 90, 95,
     Multiples of 10: 10, 20, 30, 40, 50, 60, 70, 80, 90
```

Q.1. Write all the factors of each of the following numbers

i. 21

Sol.

The factors of '21' are 1, 3, 7 and 21.

ii. 36

Sol.

The factors of '36' are 1, 2, 3, 4, 6, 9, 12 18, 36.

iii. 48

Sol.

The factors of '48' are 1, 2, 3, 4, 6, 8, 12, 16, 24,

48

Market Street	Michael III			SIDE TO COMPANY OF THE COMPANY OF TH
vi.	of two n	umber by u	sing a formu	CF and LCM
Ans.	First no.	\times 2 nd no = H(CF×LCM	
Q.2.	Fill in the blanks.			
i.	The num	ber having	no common	factors other
		e called		
ii.	A numbe	r having a fa	ctor other the	at 1 and itself
iii.			n prime num	ber.
iv.	A numbe		by if t	he digit at its
v.				to its factors
Answ	vers:			
	i. Prime	ii.	Composite	iii. 2
	iv. 2		factorization	
Q.3.	Tick(v)	the correc	et answer.	Not the Control of th
i		r of every nu		
			c. 2	d. 3
i.	Every n factors	umber great	ter than 1	has at least
	a. one	b. two	c. three	d. four
ii.	A number	r is divisible l	by 6, if it has	even number
	at the un divisible l	nit place and	l the sum of	its digits is
	a. 2		c. 6	d. 9
V.		of 2 and 3 is		
		b. 3		d. 9
	HCF will	f two numbe be.	rs 4 and 9 is	36, then its
**************************************	a. 1	b. 2	c. 9	d. 12
Ansı	ver:			
i. b	ii. l	iii.	b iv.	d v.a
			and the state of t	146
				. ()

SOLVED PTB MATH-6 CH:4,5

Exercise 4.1

Q.1. Draw the number line and mark the following numbers

-5 to 0 -1 0

ii. 0 to + 5

iii. -2 to +4

iv. -4 to +1

Q.2. Fill in the box with > or <. Sol.

i. 6 > 5 ii. -6 < -5

iii. -2 < 0 iv. 0 < 4

v. 8 > -10 vi -9 < 1

Q.3. Which is greater -101 or -111?

Sol. -101

Q.4. Which is smaller -99 or -199?

Sol. -199

7. What was the total rainfall in a week when it rained $1\frac{1}{2}$ cm on Thursday, $\frac{2}{5}$ cm on Friday and $\frac{3}{10}$ cm on Sunday, the rest of week was dry?

Sol.

Rainfall on Thursday
$$= 1\frac{1}{2} \text{ cm} = \frac{3}{2} \text{ cm}$$
Rainfall on Friday
$$= \frac{2}{5} \text{ cm}$$
Rainfall on Sunday
$$= \frac{3}{10} \text{ cm}$$
Total rainfall
$$= \frac{3}{2} + \frac{2}{5} + \frac{3}{10}$$

$$= \frac{15 + 4 + 3}{10}$$

$$= \frac{22}{10}$$

$$= 2\frac{1}{5} \text{ cm}$$
 Ans.

Objective Exercise 5

- Q.1. Answer the following questions
- Write the order in which brackets are solved.

Ans. 1. Bar or Vinculum . "____"

- 2. Parenthesis. "(
- 3. Braces "
- 4. Square Brackets "I
- "[]

- ii. What is BODMAS rule?
- Ans. BO for Brackets of
 - D for Division
 - M for Multiplication
 - A for Addition
 - S for Subtraction
- iii. What are three points needed to concentrate while solving a word problem?
- Ans. i. What do you know?
 - ii. What do you want to know?
 - iii. What is the proper operation?
- iv. What is the other name of square brackets?
- Ans. Box brackets is the other name of square brackets.
- Q.2. Fill in the blanks.
- In short the simplification rule is called the
- ii. Additions, subtraction, multiplication and division are the four ______ of mathematics.
- iii. _____ is called curly brackets or braces.
- iv. "()" is called a round br
- v. "___" is called a bar or ____

Answers:

- i. BODMAS ii. operatio.
- iv. parenthesis v. vinculum
- Q.3. Tick the correct answer.
- According to BODMAS rule, first basic operation is performed.
 - a. addition
- b. division
- c. subtraction
- d. multiplication

$$= \frac{3}{2} + \left[\frac{27}{5} - \left[\frac{26 + 25}{10}\right]\right]$$

$$= \frac{3}{2} + \left[\frac{54 - 51}{10}\right]$$

$$= \frac{3}{2} + \frac{54 - 51}{10}$$

$$= \frac{3}{2} \times \frac{10}{3}$$

$$= \frac{3}{2} \times \frac{10}{3}$$

$$= \frac{5}{4} \times \frac{10}{3} \times \frac{10}{$$

$$= \frac{14}{3} + \left[\frac{35}{9} \times \frac{27}{20}\right]$$

$$= \frac{14}{3} + \frac{21}{4}$$

$$= \frac{14}{3} \times \frac{4}{21}$$

$$= \frac{8}{9} \quad \text{Ans.}$$
4. $[0.5 \times \{4.25 - (5.1 + 2.35 + 1.05)\}]$
Sol.
$$= [0.5 \times \{4.25 - (5.1 + 2.35 + 1.05)\}]$$

$$= [0.5 \times \{4.25 - (5.1 + 3.40)\}]$$

$$[0.5 \times \{4.25 - (5.1 + 3.40)\}]$$

$$= [0.5 \times 2.75]$$

$$= [0.5 \times 2.75]$$

$$= 1.375 \quad \text{Ans.}$$
5. $[2.95 + \{3.02 \times (6.125 + 5.196 - 2.746)\}]$
Sol.
$$= [2.95 + \{3.02 \times (6.125 + 2.45)\}]$$

$$= [2.95 + (3.02 \times 2.5)]$$

$$= [2.95 + (3.02 \times 2.5)]$$

$$= [2.95 + (3.02 \times 2.5)]$$

$$= [1.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}]$$
Sol.
$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}]$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}]$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}]$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}]$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}]$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}]$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}]$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}]$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}]$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}]$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}]$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}]$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}]$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}]$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}]$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}]$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}]$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}$$

$$= 11.34 \times [3.42 + \{11.075 - (3.045 + 2.064 + 1.032)\}$$

Ans.

Q.10. Sadaf bought 2.25 kg beef at the rate of Rs.160 per kg, 0.7 kg mutton at the rate of Rs.350 per kg and 2.35kg chicken at the rate of T 1.0 per kg. What amount does she have now out of Rs.1000?

Sol.

Cost of beef =
$$2.25 \times 160$$

= Rs.360

Cost of mutton =
$$0.75 \times 350$$

$$= Rs.360 + Rs.262.5 + Rs.399.5$$

$$= Rs.1022$$

Further she has to pay Rs.22 along with Rs.1000.

Review Exercise 5

Simplify

f.
$$\left[1\frac{3}{8} - \left[\frac{2}{3} + \frac{1}{2} \times \left(\frac{3}{4} + \frac{5}{7} \times 1\frac{1}{20}\right)\right]\right]$$

Sol.

$$= \qquad [1\frac{3}{8} - [\frac{2}{3} + \frac{1}{2} \times (\frac{3}{4} + \frac{5}{7} \times 1\frac{1}{20})]]$$

$$= [\frac{11}{8} - [\frac{2}{3} + \frac{1}{2} \times (\frac{3}{4} + \overline{\frac{5}{7} \times \frac{21}{20}})]]$$

$$= \left[\frac{11}{8} - \left(\frac{2}{3} + \frac{1}{2} \times \left(\frac{3}{4} + \frac{3}{4}\right)\right)\right]$$

$$= \frac{11}{8} - \frac{2}{3} + \frac{1}{2} \times (\frac{3}{4} \times \frac{4}{3}) \|$$

$$= \frac{11}{8} - \frac{2}{3} + \frac{1}{2} \times 1 \|$$

$$= \frac{11}{8} - (\frac{4+3}{6}) \|$$

$$= \frac{11}{8} - \frac{4+3}{6} \|$$

$$= \frac{11}{8} - \frac{4+3}{6} \|$$

$$= \frac{11}{8} - \frac{7}{6} \|$$

$$= \frac{33-28}{24} = \frac{5}{24}$$
2. $1\frac{1}{2} + [5\frac{2}{5} - [2\frac{3}{5} + (2\frac{1}{12} + \frac{1}{2} + \frac{1}{3})]]$
Sol.
$$= \frac{1}{2} + [5\frac{2}{5} - [\frac{13}{5} + (\frac{25}{12} + \frac{1}{2} + \frac{1}{3})]]$$

$$= \frac{3}{2} + [\frac{27}{5} - [\frac{13}{5} + (\frac{25}{12} + \frac{3+2}{6})]]$$

$$= \frac{3}{2} + [\frac{27}{5} - [\frac{13}{5} + (\frac{25}{12} + \frac{3+2}{6})]]$$

$$= \frac{3}{2} + [\frac{27}{5} - [\frac{13}{5} + (\frac{25}{12} + \frac{5}{6})]]$$

$$= \frac{3}{2} + [\frac{27}{5} - [\frac{13}{5} + (\frac{25}{12} + \frac{5}{6})]]$$

$$= \frac{3}{2} + [\frac{27}{5} - [\frac{13}{5} + (\frac{25}{12} + \frac{5}{6})]]$$

$$= \frac{3}{2} + [\frac{27}{5} - [\frac{13}{5} + (\frac{25}{12} + \frac{5}{6})]]$$

$$= \frac{3}{2} + [\frac{27}{5} - [\frac{13}{5} + (\frac{25}{12} + \frac{5}{6})]]$$

= $\frac{3}{2} + \left[\frac{27}{5} - \left[\frac{13}{5} + \frac{5}{2}\right]\right]$

Remaining amount =
$$12000 - 1000 = \text{Rs } 11000$$

House Expenditures = $\frac{1}{2}(11000) = \text{Rs.}5500$

Remaining amount = Rs.5500

Given as debt
$$=\frac{2}{5}$$
 (5500)

= Rs.2200

Total amount left = 5500 - 2200 = Rs.3300 Ans.

Q.5. A person is walking at a speed of $1\frac{1}{8}$ km per hour. How much time does he require to reach a goal at the distance of $5\frac{1}{16}$ km

Sol.

Speed of the person =
$$1\frac{1}{8}$$
 km per hr

Distance

$$=5\frac{1}{16}$$
 km

Time spent

$$=5\frac{1}{16}+1\frac{1}{8}$$

$$=\frac{81}{16} \div \frac{9}{8}$$

$$=\frac{81}{16}\times\frac{8}{9}$$

$$=\frac{9}{2}$$

$$=4\frac{1}{2}$$
 hours Ans.

Q.6. The rate of a piece of gift paper is Rs. 0.40 per paper. How many pieces of paper can we purchase for Rs.78.40?

Sol

$$=\frac{7840}{100}+\frac{40}{100}$$

$$= 7840 \div 40$$

Q.7. The price of a book is Rs. 650. Two friends have Rs. 325 and Rs. 296 respectively. Find how may rupees two friends need more to buy that book?

Sol.

Q.9. The price of a chemical of 16 kg weight is Rs.1429. 60. What is the price of 11.4 kg chemical?

Sol.

Price of 1 kg =
$$\frac{1429.60}{16}$$

Price of 11.4 kg =
$$\frac{1429.60}{16} \times 11.4$$

= 1018.59 Ans.

Milk supplied to 3^{rd} family = $2\frac{1}{3}$ ltr

. 6.5

Total milk supplied = $5\frac{1}{2} + 1\frac{1}{6} + 2\frac{1}{3}$

$$= \frac{11}{2} + \frac{7}{6} + \frac{7}{3}$$

$$= \frac{33 + 7 + 14}{6}$$

$$= \frac{54}{6}$$

= 9 Litres Ans.

Q.2. Nosheen bought 12 metres cloth from the market. She used half of cloth for her suit and $\frac{2}{3}$ red of remaining for her daughter's suit. How much cloth left with her?

Sol.

Total cloth purchased = 12 metres Cloth used for Nosheen's suit = 6 metres

Cloth used for daughter's suit = $6 \times \frac{2}{3}$

Colth left = 6 meters - 4 metes = 2 metres Ans.

Q.3. Ahmed required $18\frac{1}{2}$ feet long wire for a cable connection. He joined two wires of length $9\frac{3}{4}$ feet and $11\frac{1}{6}$ feet. How

much wire he has more than the required length.?

Sol.

Required length of wire = $18\frac{1}{2}$ feet = $\frac{37}{2}$ Joined length of wire = $9\frac{3}{4}$ ft + $11\frac{1}{6}$ ft

= $\frac{39}{4} + \frac{67}{6}$ ft

= $\frac{117 + 134}{12} = \frac{251}{12}$ More wire = $\frac{251}{12} - \frac{37}{2}$ = $\frac{251 - 222}{12}$ = $\frac{29}{12} = 2\frac{5}{12}$ Ans.

Q.4. Saleem's salary is Rs. 12000. He gave $\frac{1}{12}$ the of his salary as alms, half of the remaining salary for house expenditures and $\frac{2}{5}$ the of the remaining as debt that was due upon him. What is the remaining salary with him?

Sol.

Total amount = Rs.12000 Given as alms = $\frac{1}{12} \times 12000$ = Rs.1000

```
[1.25 + (12.099 + 4.033)]
                [1.25 + 3]
                4.25 Ans.
        2.25 \times [1.005 + (0.5 \times (2.75 + 2.2 \times 4.12))]
Sol.
                2.25 \times [1.005 + (0.5 \times (2.75 + 2.2 \times 4.12))]
               2.25 \times [1.005 + \{0.5 \times 5.15\}]
                2.25 \times [1.005 + 2.575]
                2.25 \times 3.58
                8.055 Ans.
        13.311 + [3.251 + [2.045 - (1.9 \times 1.06 - 1.02)]]
12.
Sol.
                13.311+[3.251+[2.045-(1.9× 1.06-1.02 )]
                13.311 + [3.251 + \{2.045 - (1.9 \times 0.04)\}]
                13.311 + [3.251 + 1.969]
                13.311 \pm 5.22
                2.55 Ans.
         0.6 \times [3.9 \times \{0.5328 + (0.1 + 0.01 + 0.001)\}]
 Sol.
                0.6 \times [3.9 \times [0.5328 + (0.1 + 0.01 + 0.001)]]
                0.6 \times [3.9 \times [0.5328 + 0.111]]
                0.6 \times [3.9 \times 0.48]
                0.6 \times 4.8
                 2.88 Ans.
         4.4238+[1.047+[1.111x(9.261+5.432+2.345]])x1.01
 Sol.
```

4.4238+[1.047+{1.111×(9.261+7.7777)}]×1.01

```
4.4238+[1.047+(1.111×1.1908)]×1.01
     4.4238+[1.047+2.30] ×1.01
     4.4238 + 3.349 ×1.01
     1.3209 \times 1.01
     1.33 Ans.
     100.014-[2.3584+[0.044+(8.25-5.235+1.255))]]
Sol.
     = 100.014-[2.3584+[0.044+(8.25-5.235+1.255))]]
     = 100.014 [2.3584+[0.044+(8.25-6.49)]]
     = 100.014-[2.3584+(0.044+1.76)]
     = 100.014-[2.3584+0.025]
     = 100.014-94.336
     = 5.678
                  Ans.
```

Exercise 5.2

Q.1. Three families live together in a house. The daily milk of one family is $5\frac{1}{2}$ litres and the other two families use $1\frac{1}{6}$ litresand $2\frac{1}{3}$ litres respectively. How much milk would a milkman supply them? Sol.

> Milk supplied to 1st family = $5\frac{1}{2}$ ltr. Milk supplied to 2^{nd} family = $1\frac{1}{6}$ ltr.

$$= \frac{48-25}{15}$$

$$= \frac{23}{15}$$

$$= 1\frac{8}{15} \quad \text{Ans.}$$
7. $1\frac{4}{5} + [\frac{1}{25} \times \{1\frac{1}{4} + (3\frac{1}{3} + 2\frac{1}{2} \times 1\frac{5}{16})\}] \times \frac{1}{2}$
Sol.
$$= 1\frac{4}{5} + [\frac{1}{25} \times \{1\frac{1}{4} + (3\frac{1}{3} + 2\frac{1}{2} \times 1\frac{5}{16})\}] \times \frac{1}{2}$$

$$= \frac{9}{5} + [\frac{1}{25} \times [\frac{5}{4} + (\frac{10}{3} + \frac{5}{2} \times \frac{21}{16})]] \times \frac{1}{2}$$

$$= \frac{9}{5} + [\frac{1}{25} \times [\frac{5}{4} + (\frac{10}{3} \times \frac{2}{5} \times \frac{21}{16})]] \times \frac{1}{2}$$

$$= \frac{9}{5} + [\frac{1}{25} \times [\frac{5}{4} + \frac{7}{4}]] \times \frac{1}{2}$$

$$= \frac{9}{5} + [\frac{1}{25} \times [\frac{5+7}{4}]] \times \frac{1}{2}$$

$$= \frac{9}{5} + [\frac{1}{25} \times \frac{12}{4}]] \times \frac{1}{2}$$

$$= \frac{9}{5} \times \frac{25}{3} \times \frac{1}{2}$$

$$= \frac{9}{5} \times \frac{25}{3} \times \frac{1}{2}$$

$$= \frac{15}{2} = 7\frac{1}{2} \quad \text{Ans.}$$
8. $[2\frac{1}{3} + (1\frac{1}{3} + (1\frac{1}{3} \times 3\frac{1}{5} - 3\frac{1}{5})] \times 1\frac{4}{5}]$
Sol.

 $[2\frac{1}{3} + [1\frac{1}{3} + (1\frac{1}{3} \times 3\frac{1}{5} - 3\frac{1}{5})] \times 1\frac{4}{5}]$

$$= \left[\frac{7}{3} \div \left(\frac{4}{3} + \left(\frac{4}{3} \times \frac{16}{5} - \frac{16}{5}\right)\right) \times \frac{9}{5}\right]$$

$$= \left[\frac{7}{3} \div \left(\frac{4}{3} + \left(\frac{64}{15} - \frac{16}{5}\right)\right) \times \frac{9}{5}\right]$$

$$= \left[\frac{7}{3} \div \left(\frac{4}{3} + \frac{64 - 48}{15}\right) \times \frac{9}{5}\right]$$

$$= \left[\frac{7}{3} \div \left(\frac{4}{3} + \frac{16}{15}\right) \times \frac{9}{5}\right]$$

$$= \left[\frac{7}{3} \div \left(\frac{20 + 16}{15}\right) \times \frac{9}{5}\right]$$

$$= \left[\frac{7}{3} \times \frac{36}{15} \times \frac{9}{5}\right]$$

$$= \left[\frac{7}{4} \times \frac{15}{36} \times \frac{9}{5}\right]$$

$$= \frac{7}{4}$$

$$= 1\frac{3}{4} \quad \text{Ans.}$$
9. $[2 + \{1.25 \times 3.85 \div (5.64 - 2.9 + 1.2)\}]$
Sol.
$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 \div (5.64 - 4.1)\}]$$

$$= [3 + \{1.25 + \{1.2099$$

 $[1.25 + \{12.099 + (1.45 + 2.583)\}]$

$$=\frac{48-25}{15}$$

$$=\frac{23}{15}$$

$$=1\frac{8}{15} \quad \text{Ans.}$$
7. $1\frac{4}{5} + [\frac{1}{25} \times \{1\frac{1}{4} + (3\frac{1}{3} + 2\frac{1}{2} \times 1\frac{5}{16})\}] \times \frac{1}{2}$
Sol.
$$=\frac{4}{5} + [\frac{1}{25} \times \{1\frac{1}{4} + (3\frac{1}{3} + 2\frac{1}{2} \times 1\frac{5}{16})\}] \times \frac{1}{2}$$

$$=\frac{9}{5} + [\frac{1}{25} \times [\frac{5}{4} + (\frac{10}{3} + \frac{5}{2} \times \frac{21}{16})]] \times \frac{1}{2}$$

$$=\frac{9}{5} + [\frac{1}{25} \times [\frac{5}{4} + (\frac{10}{3} \times \frac{2}{5} \times \frac{21}{16})]] \times \frac{1}{2}$$

$$=\frac{9}{5} + [\frac{1}{25} \times [\frac{5}{4} + \frac{7}{4}]] \times \frac{1}{2}$$

$$=\frac{9}{5} + [\frac{1}{25} \times [\frac{5+7}{4}]] \times \frac{1}{2}$$

$$=\frac{9}{5} + [\frac{1}{25} \times \frac{12}{4}] \times \frac{1}{2}$$

$$=\frac{9}{5} \times \frac{3}{25} \times \frac{1}{2}$$

$$=\frac{9}{5} \times \frac{25}{3} \times \frac{1}{2}$$

$$=\frac{15}{2} = 7\frac{1}{2} \quad \text{Ans.}$$

8.
$$\left[2\frac{1}{3} + \left(1\frac{1}{3} + \left(1\frac{1}{3} \times 3\frac{1}{5} - 3\frac{1}{5}\right)\right) \times 1\frac{4}{5}\right]$$

Sol.

$$= \qquad [2\,\frac{1}{3}\,+\{1\,\frac{1}{3}\,+(1\,\frac{1}{3}\times3\,\frac{1}{5}\,-3\,\frac{1}{5}\,)\}\times1\,\frac{4}{5}\,]$$

$$= \left[\frac{7}{3} + \left(\frac{4}{3} + \left(\frac{4}{3} \times \frac{16}{5} - \frac{16}{5}\right)\right) \times \frac{9}{5}\right]$$

$$= \left[\frac{7}{3} + \left(\frac{4}{3} + \left(\frac{64}{15} - \frac{16}{5}\right)\right) \times \frac{9}{5}\right]$$

$$= \left[\frac{7}{3} + \left(\frac{4}{3} + \left(\frac{64 - 48}{15}\right)\right) \times \frac{9}{5}\right]$$

$$= \left[\frac{7}{3} + \left(\frac{4}{3} + \frac{16}{15}\right) \times \frac{9}{5}\right]$$

$$= \left[\frac{7}{3} + \left(\frac{20 + 16}{15}\right) \times \frac{9}{5}\right]$$

$$= \left[\frac{7}{3} + \frac{36}{15} \times \frac{9}{5}\right]$$

$$= \left[\frac{7}{3} \times \frac{15}{36} \times \frac{9}{5}\right]$$

$$= \frac{7}{4}$$

$$= 1\frac{3}{4} \qquad \text{Ans.}$$
9. $[2 + \{1.25 \times 3.85 + (5.64 - 2.9 + 1.2)\}]$
Sol.
$$= [2 + \{1.25 \times 3.85 + (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 + (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 + (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 + (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 + (5.64 - 2.9 + 1.2)\}$$

$$= [2 + \{1.25 \times 3.85 + (5.64 - 4.1)\}]$$

$$= [2 + \{1.25 \times 3.85 + 1.54\}]$$

$$= [2 + (1.25 \times 2.5)]$$

$$=$$
 [2+3.125]
 $=$ 5.125 Ans.

10.
$$[1.25 + \{12.099 + (1.45 + 2.1 \times 1.23)\}]$$

Sol.

Sol.

Sol.

$$= \left[1 \frac{1}{24} + \left\{1 \frac{1}{4} \times \left[1 \frac{1}{10} + 1 \frac{2}{5} - 1 \frac{1}{4}\right]\right\}\right]$$

$$= \left[\frac{25}{24} + \left(\frac{5}{4} \times \left(\frac{11}{10} + \frac{7}{5} - \frac{5}{4}\right)\right)\right]$$

$$= \left[\frac{25}{24} + \left(\frac{5}{4} \times \left(\frac{22 + 28 - 25}{20}\right)\right)\right]$$

$$= \left[\frac{25}{24} + \left(\frac{5}{4} \times \frac{25}{20}\right)\right]$$

$$= \left[\frac{25}{24} + \frac{25}{16} \right]$$

$$= \left[\frac{25}{24} \times \frac{16}{25}\right]$$

$$=\frac{2}{3}$$
 Ans.

2.
$$\frac{8}{9} + \left[\frac{5}{3} + \left(\frac{4}{39} \times \left(\frac{3}{4} + \frac{2}{3} \times \frac{1}{2}\right)\right)\right]$$

Sol.

$$= \frac{8}{9} + \left[\frac{5}{3} + \left(\frac{4}{39} \times \left(\frac{3}{4} + \frac{2}{3} \times \frac{1}{2}\right)\right)\right]$$

$$= \frac{8}{9} + \left[\frac{5}{3} + \left(\frac{4}{39} \times \left(\frac{3}{4} + \frac{1}{3}\right)\right)\right]$$

$$= \frac{8}{9} + \left[\frac{5}{3} + \left(\frac{4}{39} \times \left(\frac{9+4}{12}\right)\right)\right]$$

$$= \frac{8}{9} + \left[\frac{5}{3} + \left(\frac{4}{39} \times \frac{13}{12}\right)\right]$$

$$= \frac{8}{9} + \left[\frac{5}{3} + \frac{1}{9}\right]$$

$$= \frac{8}{9} + \left[\frac{15+1}{9}\right]$$

$$= \frac{8}{9} + \frac{16}{9}$$

$$= \frac{8+16}{9} = \frac{24}{9}$$

$$= 2\frac{2}{3} \quad \text{Ans.}$$
3. $[1\frac{1}{4} + 1\frac{1}{10} \times \{8\frac{1}{2} - (6\frac{1}{2} \times 1\frac{5}{39})\}]$
Sol.
$$= [1\frac{1}{4} + 1\frac{1}{10} \times \{8\frac{1}{2} - (6\frac{1}{2} \times 1\frac{5}{39})\}]$$

$$= [\frac{5}{4} + \frac{11}{10} \times [\frac{17}{2} - (\frac{13}{2} \times \frac{44}{39})]]$$

$$= [\frac{5}{4} + \frac{11}{10} \times [\frac{17}{2} - \frac{22}{3}]]$$

$$= [\frac{5}{4} + \frac{11}{10} \times [\frac{51 - 44}{6}]]$$

$$= [\frac{5}{4} + \frac{11}{10} \times \frac{7}{6}]$$

$$= \frac{5}{4} + \frac{11}{10} \times \frac{7}{6}$$

$$= \frac{5}{4} + \frac{77}{60}$$

$$= \frac{\frac{5}{4} + \frac{77}{60}}{\frac{75}{60}} = \frac{\frac{75 + 77}{60}}{\frac{2}{60}} = \frac{\frac{76}{30} = \frac{38}{15}}{\frac{2}{15}} = 2\frac{8}{15} \quad \text{Ans.}$$
4. $2\frac{8}{14} + [1\frac{4}{5} \times \{1\frac{1}{3} + (2\frac{1}{2} + 1\frac{1}{3} - 2\frac{1}{6})\} \times 1\frac{2}{3}]$

Sol.
$$= 2\frac{8}{14} + \left[1\frac{4}{5} \times \left[1\frac{1}{3} + \left(2\frac{1}{2} + 1\frac{1}{3} - 2\frac{1}{6}\right)\right] \times 1\frac{2}{3}\right]$$

iii.	Which process	is known as	Ex.4	
	process of addit	come on the inve		
Ans.				
	addition.	our loss than 1		
iv.		ers less than 1.		
Ans.				
100000000000000000000000000000000000000	Fill in the blan	KS.	111	
i.	In routine, we dintegers.			
ii.	integer.	er a positive n		
iii.	The product of tw integer.		osite signs is	
iv.	Integers are also	known as		
Ans	wers:	encedan nelv		
i. Pos	sitive ii. 0	iii. negative	iv. directed	
	Tick (v) the c			
i.	error to 1	lue of -55 is:		
	a. 55 b. 5		d55	
ii.	Division of an int	eger is not possi	ble by	
	a. positive integer	b, negat	tive integer	
	c. zero	d. its al	solute value	
iii.	(+7) + (-3) = ?			
	a. 10 b	4 c10	d. +4	
iv.	[(-1)+(-1)]-(-1)			
	a. +1 b	1 c2	d. +2	
V.	(-1) + (-1) = ?			
	a. +1 b	1 c2	d. 1	
Ans	swers			
	i. 55	ii.0	hii. +4	
	iv1	v. +1		
wet To		- Total	34 310-	

Brackets

Brackets tell us the order of solving of the expression.

Order of Brackets

Brackets are solved in the following order.

1.	1000		Bar or vinculur		
2.	- ()	Parenthesis		

BODMAS Rule

Simplification rule is also called BODMAS rule. It means to perform the four operation as

- i. BO for Brackets of
- ii. D for Division
- iii. M for Multiplication
- iv. A for Addition
- v. S for subtraction

Exercise 5.1 ·

Q.1. Simplify the following;

1.
$$[1\frac{1}{24} + \{1\frac{1}{4} \times [1\frac{1}{10} + 1\frac{2}{5} - 1\frac{1}{4})\}]$$

ii.
$$(+1) \times (-2) \times (+3) \times (4)$$

Sol.
$$-2 \times 12 = -24$$

Sol.
$$= +18 \times (-4)$$

= -72

vi.
$$[(-18) \times (3)] \times (2)$$

Sol.

$$=-54 \times 2$$

= -108

Sol.

$$=(-200)\times(-16)$$

= 3200

Sol.

$$= +1500 \times 3$$

= 4500

Exercise 4.5

Q.1. Solve

Sol.
$$=\frac{-42}{-7}=6$$

Sol.
$$=\frac{+36}{+9}=+4$$

Sol.
$$=\frac{+65}{+5} = +13$$

Sol.
$$=\frac{-27}{-3}=+9$$

Sol.
$$=\frac{-126}{+14}=-9$$

Sol.
$$=\frac{+34}{-17} = -2$$

Sol.
$$=\frac{+260}{-13} = -20$$

Sol.
$$=\frac{-189}{-21}=+9$$

They a st

Sol.
$$=\frac{-155}{+31}$$

= -5

Sol. =
$$\frac{+372}{+124}$$

= +3

Q.2. Fill in the following boxes.

i.
$$\frac{12}{3} = 4$$

ii.
$$\frac{-16}{8} = -2$$

iii.
$$\frac{\boxed{-20}}{5} = -4$$

iv.
$$\frac{30}{|-5|} = -6$$

$$v. \qquad \frac{\boxed{-72}}{-8} = 9$$

vi.
$$\frac{169}{13} = \boxed{13}$$

vii.
$$\frac{8}{2} = 2 \times \boxed{2}$$

viii.
$$-\frac{16}{2} = 2 \times \boxed{-4}$$

ix.
$$\frac{-27}{-3} = 3 \times \boxed{3}$$

Q.3. Find the quotient of the following.

i.
$$(+252) + (+18)$$

Sol. $=\frac{+252}{+18}$

Sol.
$$=\frac{+252}{+18}$$

= 14

Sol.
$$=\frac{-195}{+15}$$

= -13

$$S_0$$
 = $\frac{-480}{-120}$ = $+4$

Sol.
$$=\frac{\pm 196}{-28}$$

= -7

Sol.
$$=\frac{-99}{+11}=-9$$

Sol.
$$=\frac{+2000}{-40}$$

= -50

iv.
$$(+16) - (+5) = (+11)$$

v. (+6) - (-3) = +9

vi. (-16) - (+13) = -29

Q.3. Simplify the following.

i. [(-8)-(-6)]-(-4)Sol. =[-8+6]+4=-2+4

= 2 ii. [(+11)-(+5)]-(+19)

Sol. = [+11-5]-19= +6-19= -13

iii. [(-13)-(-18)]-(+17)

Sol. = [-13 + 18] - 17= +5 - 17 = -12 iv. [(-18)-(+12)]-(-19) Sol. = [-18 - 12] + 19

Sol. = [-18 - 12] + 1 = -30 + 19 = -11

v.[(+23) - (-9)] - (+29) Sol. = [+23 + 9] - 29 = +32 - 29

=+3

vi.[(+100)-(+50)]-(+25)

Sol. = [+100-50] - 25 = 50 - 25 = 25

Q.4. Subtract - 111 from +111

Sol.

= (+111) - (-111)

= + 111 + 111 = + 222 Ans.

Q.5. The sum of two integers is -99. One integer is -66, find the other.

Sol.

= (-99) - (-66)= -99 + 66 = 33

Exercise 4.4

Q.1. Fill in the boxes.

i. $(+6) \times (-3) = \boxed{-18}$

ii. $(-9) \times \boxed{-9} = 81$

iii. $(-2) \times (+8) = -16$

iv. $\boxed{+11} \times +11 = 121$

v. $\boxed{-8} \times -7 = 56$

vi. $-25 \times [+3] = -75$

vii. (-) × (-) = +

viii. (+) × (-) = -

Q.2. Find the product of the following.

i. +3, +4 Sol.

 $= +3 \times +4 = +12$

ii. -6,-2

Sol. 4= $-6 \times -2 = +12$

iii. +5, -5

Sol. $= +5 \times -5 = -25$

iv. -7,+8

Sol.

 $=-7\times+8=-56$

v. -9, -4 Sol.

 $=-9 \times -4 = +36$

vi. +3, -8 Sol.

= +3 × -8= -24

vii. -10, -5 Sol.

 $=-10 \times -5 = +50$

viii. +11,-7

Sol. $= +11 \times -7 = -77$

ix. -9, -8 Sol.

 $=-9 \times - 8 = +72$

x. +6, +12

Sol. $= +6 \times +12 = +72$

xi. -3, +50

Sol.

 $= -3 \times +50$ = -150

xii. -7,+7

Sol.

 $=-7 \times +7 = -49$

xiii. -4, -9

Sol.

 $= -4 \times -9$ = +36

xiv. -5, -13

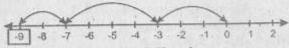
Sol.

 $= -5 \times -13$ = +65

xv. +110, -8

Sol.

 $= +110 \times -8$ = -880


Q.3. Simplify each of the following

Sol. $(-1) \times (-1) \times (-1) \times (-1)$

 $= +1 \times +1 = +1$ = 1 Ans.

(-3) + (-4) + (-2)vi.

Sol.

Q.2. Find the sum of the following.

Q.3. Fill in the boxes.

i.
$$(+3) + (-6) = \boxed{-3}$$

ii. $(+7) + (+3) = \boxed{+10}$

iii.
$$(-6) + (-9) = -15$$

$$iv. (+5) + \boxed{+2} = (+7)$$

i.

Sol.

=

Q.4. Solve the following.

[(+2) + (+3)] + (+4)

5 + 4 = 9

生 四

[2+3]+(+4)

ii. (+9) + (+7)

v. -11 + (-5) = -16

vi. | +19 | + (-17) = (+2)

vii. (100)+ -50 = (+50)

viii.(-11) + -100

=(-111)

Sol.
$$= -18 - 7$$

 $= -25$

Q.2. Fill in the blanks.

$$(+2) - (+9) = -7$$

ii.
$$(-8) - (+4) = -12$$

iii.
$$(-11) - (-13) = (+2)$$

ii.
$$[(-1)+(-1)]+(-5)$$
 = $-8+4=-4$ (4.2)
Sol. = $[-1-1]-5$ v.(+25)+[(+25)+(+50)]
= $-2-5=-7$ Sol. = $25+[25+50]$
iii. $[(+3)+(+5)]+(-1)$ = $25+75=100$
Sol. = $[+3+5]-1$ vi. $(-18)+[(25)+(-30)]$
= $8-1=7$ Sol. = $(-18)+[25-30]$
iv. $[(-2)+(-6)]+(+4)$ Sol. = $[-2-6]+4$ = $25-48=-23$

Exercise 4.3

Sol. = +23 - 15

= 8

Sol. =-42 + 21

Sol. = +69 + 21

= 90

= -32

Sol. = 102 + 133

= 235

xii. (-195) - (-165)

Sol. = -195 + 165

= -30

ix.

x.

Sol.

= -21

(+69) - (-21)

(+49) - (+81)

(+102) - (-133)

= +49 - 81

viii. (-42) - (-21)

Q.1. Simplify the following.

Sol.
$$= +8 - 5$$

 $= +3$

iv.
$$(-7) - (-9)$$

Sol. $= -7 + 9$

Sol.
$$= -7 + 9$$

= 2

$$(+2) - (+9) = -7$$

Q.5. Write the integers between (4.1) iii. -6 and -1 2 and 6 Sol. -5, -4, -3, -2 Sol. 3, 4, 5 iv. -3 and 4 -2 and 3 ii. Sol. -2, -1, 0, 1, 2, 3 Sol. -1, 0, 1, 2 Q.6. Give two possible integers in following cases. iii. > -3 0 < Sol. -2, -1 Sol. 1, 2, ii. < 0 Sol. -1, -2 Q.7. Write three integers smaller than 2. Sol. 1, 0, -1 Q.8. Write four integers greater than -2. Sol. -1, 0, 1, 2 Q.9. Find the numerical values of each of the following. i. 3 Numerical value of 3 is 3. Sol. |3| = 3 -8 Numerical value of -8 is 8, Sol. |-8| = 85 iii. Numerical value of 5 is 5 Sol. |5| = 5

iv. -9Sol. $|-9| = 9 \Rightarrow$ Numerical value of -9 is 9.

v. -6Sol. |-6|=6 \Rightarrow Numerical value of -6 is 6.

vi -2Sol. |-2|=2 \Rightarrow Numerical value of -2 is 2

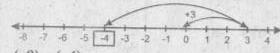
Q.10. Write the integer whose numerical value is 0.

Sol. '0'.

Q.11. Arrange the given integers in ascending and descending order.

i. -4, 1, -2, 0 Ascending order = -4, -2, 0, 1 Descending order = 1, 0, -2, -4

ii. 1, -3, -4, 0Ascending order = -4, -3, 0, 1Descending order = 1, 0, -3, -4

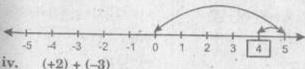

iii. -2, -3, 3, 2 Ascending order = -3, -2, 2, 3 Descending order = 3, 2, -2, -3

Exercise 4.2

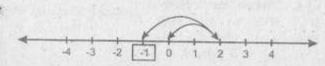
Q.1. Use the number line to write the sum.


$$-7 + (+3)$$

Sol.


ii. (-2) + (-4)

Sol.



iii. (+5) - (+1)

Sol.

Sol


```
The bracket vinculum is denoted by
      ii.
                                  b.
      a.
           l is called.
iii.
                                         braces
            parenthesis
       a:
                                         box brackets
                                  d.
             vinculum
       d.
       After simplifying \{1+(2+4+2\times1-3)\} we get
iv.
                                  d. .
       c.
       [1+2\times(5-(1+6+2))]
                                     iii. Box paranthesis
        i. division ii.
```

SOLVED PTB MATH-6 CH:6,7,8

Q.4. If x = 4, y = 2 and z = 5, then find the value of Rev. Ez. 8

Sol.

2x - 3 = ?Put x = 4, z = 5 above. So 2x - z = 2(4) - 5=8-5=3

 $5x^2 = ?$ Put x = 4 above. So $5x^2 = 5(4)^2$ =5(16)=80

iii. x+y=?Put x = 4, y = 2 above

x + y = 4 + 2So x + y = 6

iv. x+y-z=?Put x = 4, y = 2, z = 5 above. So x+v-z=4+2-5=6-5=1

 $v. \quad 2xy - yz + y = ?$ Put x = 4, y = 2, z = 5 above. So 2xy - yz + y = 2(4)(2) - (2)(5) + 2= 16 - 10 + 2 = 18 - 10 = 8

vi. $x^2 + z^2 - 2y = ?$ Put x = 4, y = 2, z = 5 above. So $X2 + z2 - 2y = (4)^2 - (5)^2 - 2(2)$ =16-25-4=-9-4=-13

vii. $4x^2 + 2vz - y = ?$ Put x = 4, y = 2, z = 5 above. So $4x^2 + 2yz - y = 4(4)^2 + 2(2)(5) - 2$ =4(16)+20-2=64+20-2=82 viii. $4yz - z^2 + 3x^2 = ?$ Put x = 4, y = 2, z = 5 above, So- $4yz - z^2 + 3x^2 = 4(2)(5) - (5)^2 + 3(4)^2$ =40-25+48=15+48= 63Ans. $4x2 - 3y^2z - 8xz = ?$ Put x = 4, y = 2, z = 5 above. So

 $4x^2 - 3y^2z - 8xy$ $=4(4)^2-3(2)^2(5)-8(4)(5)-8(4)(5)$ =4(16)-15(4)-160A = 64 - 60 - 160 = -156 Ans.

Objective Exercise S

Q.1. Answer the following questions.

Define the sentence.

Ans. A group of words that makes a complete sense is called as sentence.

What is meant by an open statement?

Ans. The statement about which we can't decide which is true and which is false, until we get further information.

What is called the number that makes an open statement true?

Ans. It is called satisfying statement.

What is a variable?

Ans. In algebra, a letter is used as symbol of any number or value which is called a variable.

Define the evaluation.

Ans. The process of finding the numerical value of an expression by using numbers in place of variables.

 $5x^2 + 3xy + 8y^2 - 7$

```
Q.3. Simplify.
                                    Rev. Fr. 8
Sol.
      [3x^2 - (x^2 - 2y (5x - 3y))]
i.
      = [3x^2 - (x^2 - 10xy + 6y^2)]
      = [3x^2 - x^2 + 10xy - 6y^2]
      =2x^2+10xy-6y^2
    x - [2y - (3x - (2y + 3z))]
      = x + [2y - (3x - 2y - 3z)]
      = x - [2y - 3x + 2y + 3z]
      = x - [3x + 4y + 3z]
      = x + 3x - 4y - 3z
      = 4x - 4y - 3z
                              Ans.
     2a - [3a - (4a - (3a - 2a + 3b))]
      = 2a - [3a - [4a - (3b - 2a - 3b)]]
      = 2a - [3a - {4a - (-2a)}]
      = 2a - [3a - [4a + 2a]]
      = 2a - [3a - (6a)]
      = 2a - [3a - 6a]
      = 2a [-3a]
      = 2a + 3a
                              Ans.
      =5a
iv. -l-5m-[2l-m-(3l-2m-(l+2m))]
      =-l-5m-[2l-m-(3l-2m-l-2m)]
      =-l-5m-[2l-m-[2l-4m]]
      =-l-5m-[2l-m-2l+4m]
      =-1-5m-[3m]
      = -l - 5m - 3m
```

Ans.

= -l - 8m

(ii)
$$\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{a}$$

Sol.
L.H.S
 $(3) \times (2) = (2) \times (3)$ R.H.S
 $6 = 6$
So,
L.H.S = R.H.S
(iii) $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$
Sol.
L.H.S
 $= (3 + 2) + 1 = 6$
R.H.S
 $= \mathbf{a} + (\mathbf{b} + \mathbf{c}) = (3) + (2 + 1) = 6$ Ans.
So,
L.H.S = R.H.S
(iv) $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$
Sol.
L.H.S
 $= (3 \times 2) \times 1 = 3 \times (2 \times 1)$ R.H.S
 $6 = 6$
So,
L.H.S = R.H.S
(v) $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$
Sol.
L.H.S
 $= \mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (3) \times (2 + 1) = 9$
So,
L.H.S = R.H.S
(vi) $\mathbf{a} \times (\mathbf{b} - \mathbf{c}) = \mathbf{a} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}$
Sol.
L.H.S
 $= \mathbf{a} \times (\mathbf{b} - \mathbf{c}) = \mathbf{a} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}$
Sol.
L.H.S
 $= \mathbf{a} \times (\mathbf{b} - \mathbf{c}) = (3) \times (2 - 1) = 3$

 $= a \times b - a \times c = (3) \times (2) - (3) \times (1)$

R.H.S

$$= 3$$
So,

L.H.S = R.H.S
(vii) $a^2 - b^2 = (a + b) (a - b)$
Sol.

L.H.S
$$= a^2 - b^2 = (3)^2 - (2)^2 = 9 - 4 = 5$$
R.H.S
$$= (a + b) (a - b) = (3 + 2) (3 - 2)$$

$$= (5) (1) = 5$$
So,

L.H.S = R.H.S

Review Exercise 8

Q.1. Find the sum of

i.
$$3x^2 - x + 7$$
 and $-2x^2 + 5x - 8$
Sol.
$$= 3x^2 - x + 7 - 2x^2 + 5x - 8$$

$$= 3x - x + 7 - 2x + 5x - 8$$

$$= x^{2} + 4x + 7 - 8$$

$$= x^{2} + 4x - 1$$

ii.
$$5x^2 - 4x + 2$$
 and $-3x^2 - 7x + 4$
Sol.

$$5x^{2} - 4x + 2$$

$$-3x^{2} - 7x + 4$$

$$2x^{2} - 11x + 6$$

$$= 2x^{2} - 11x + 6$$
 Ans.

$$= (2a - 3b + 4c) + (5a + 2b - 5c)$$
$$= 2a - 3b + 4c + 5a + 2b - 5c$$
$$= 2a + 5a - 3b + 2b + 4c - 5c$$

```
Q.3. If a = 1, b = 1 and c = 9, then prove that
     a-b+c=9.
Sol.
L.H.S
     = a - b + c
R.H.S
. = 9
So,
     L.H.S = R.H.S
      =(1)-(1)+9=9 Ans.
Q.4. If a = 10, b = -10 and c = 4, then prove
      that a \times b + 25c = 0.
Sol.
LHS
      = a \times b + 25c = (10) \times (-10) + 25(4)
    =-100+100=0
R.H.S
      = 0
 So,
      L.H.S = R.H.S
 Q.5. If x = 1 and y = 1, then prove that (x+y)^2
      = x^2 + 2xy + y^2
 Sol.
 L.H.S
       =(x+y)^2=(1+1)^2=(2)^2=4
 R.H.S
       = x^2 + 2xy + y^2 = (1)^2 + 2(1)(1) + (1)^2
       =1+2+1=4
 So.
       L.H.S = R.H.S
```

```
Q.6. If x = 2 and y = 1, then prove that (x-y)^2
     = x^2 - 2xy + y^2.
Sol.
L.H.S
     =(x-y)^2=(2-1)^2=(1)^2=1
R.H.S
     = x^2 - 2xy + y^2 = (2)^2 - 2(2)(1) + (1)^2
     =4-4+1=1
So.
     L.H.S = R.H.S
Q.7. Evaluate 2 - [2 - (2 - 2 - x)] when
     x = 1.
Sol.
     =2-[2-(2-(2-2-x))]
     =2-[2-[2-(2-2+1)]]
     =2-[2-\{2-(1)\}]
     =2-[2-\{1\}]
     =2-[1]
     =2-1
     = 1 Ans.
Q.8. If a = 1, b = 3 and c = 1, their evaluate
     b2 - 4ac.
Sol.
     = b^2 - 4ac = (3)^3 - 4(1)(1)
     =9-5=5 Ans.
Q.9. If a = 3, b = 2 and c = 1, then prove that.
(i) a + b = b + a
Sol.
L.H.S
     =(3)+(2)=(2)+(3) R.H.S
     5 = 5
     L.H.S = R.H.S
```

Exercise 3.6

- 1. Evaluate the following when a = 2, b = 1and c = 1.
- (i) a+b

Sol.

$$= a + b = (2) + (1) = 3$$
 Ans.

(ii) a-c

Sol.

$$=(2)-(1)=1$$
 Ans.

(iii) b+c

Sol.

$$=(1)+(1)=2$$
 Ans.

(iv) a+b+c

Sol.

$$=(2)+(1)+(1)=4$$
 Ans.

(v) a-b

Sol.

$$=(1)-(1)=0$$
 Ans.

(vi) a-b+c

Sol.

$$=(2)-(1)+(1)=2$$
 Ans.

(vii) ab + bc

Sol.

$$= (2)(1) + (1)(1) = 3$$
 Ans.

(viii) 4ab

Sol.

$$=4(2)(1)=8$$
 Ans.

(ix) abc

Sol.

(x) ab - bc + ac

Sel.

$$= (2)(1) - (1)(1) + (2)(2) = 3$$
 Ans.

(xi) 6a-2b-2c

Sol.

$$=6(2)-2(1)-2(1)=8$$
 Ans.

(xii) $a^2 + b^2 + c^2$ Sol.

$$=(2)^2+(1)^2+(1)^2=6$$
 Ans,

(xiii)
$$\frac{a^2 + b^2 - c^2}{2}$$

Sol.

$$=\frac{(2)^2 + (1)^2 - (1)^2}{2} = \frac{4}{2} = 2 \text{ Ans}$$

(xiv) $\frac{a}{b} + \frac{b}{c}$

Sol.

$$=\frac{(2)}{(1)} + \frac{(1)}{(1)} = 2 + 1 = 3$$
 Ans.

(xv) $\frac{ab}{bc} + \frac{ac}{bc}$

Sol.

$$=\frac{(2)(1)}{(1)(1)}+\frac{(2)(1)}{(1)(1)}=2+2=4$$
 Ans.

Q.2. If a = 5 and b = -3 then prove that a+b=2. Sol.

L.H.S

$$= a + b = (5) + (-3) = 5 - 3 = 2$$
 Ans.

R.H.S

$$L.H.S = R.H.S$$

```
= [6a + {3a + (3a + b)}] + 6c
     = [6a + (3a + 3a + b)] + 6c
     = [6a + [6a + b]] + 6c
     = [6a + 6a + b] + 6c
      = [12a + b] + 6c
      = 12a + b + 6c Ans.
     [2x^2 - xy - [xy - (2x^2 x^2 - y^2)]]
Sol.
      = [2x^2 - xy - [xy - (x^2 - y^2)]]
      = [2x^2 - xy - \{xy - x^2 + y^2\}]
      = [2x^2 - xy - xy + x^2 - y^2]
      = [2x^2 - 2xy + x^2 - y^2]
      = [(3x2 - 2xy - y^2)]
      = [3x^2 - 2xy - y^2]
      =3x^2-2xy-y^2 Ans.
      8[3(4a+5b)-2(6a-5b)]
xi.
Sol.
      = 8[12a + 15b - 12a + 10b]
      = 8[12a - 12a + 15b + 10b]
      = 8[25b]
       = 200b Ans.
xii. [11a - {5b - 3(2a + b)}]
Sol.
       = [11a - (5b - 6a - 3b)]
       = [11a - [2b - 6a]]
       = [11a - 2b + 6a]
       = [11a + 6a - 2b]
       = [17a - 2b]
       = 17a - 2b Ans.
 xiii. [a+c+[a-c+(a+b+b-c)]]
 Sol.
       = [a+c+(a-c+(a+b+b-c))]
       = [a + c + (a - c + (a + b + b - c))]
```

$$= [a + c + \{a - c + (a + 2b - c)\}]$$

$$= [a + c + \{a - c + a + 2b - c\}]$$

$$= [a + c + \{2a + 2b - 2c\}]$$

$$= [a + c + 2a + 2b - 2c]$$

$$= [a + 2a + 2b + c - 2c]$$

$$= [3a + 2b - c]$$

$$= 3a + 2b - c \text{ Ans.}$$

$$xiv. \quad 5x - [3y - [4x - (5y - 6x + 7y)]]$$

$$= 5x - [3y - [4x - (5y - 6x + 7y)]]$$

$$= 5x - [3y - [4x - 5y + 6x - 7y]]$$

$$= 5x - [3y - [4x + 6x - 5y - 7y]]$$

$$= 5x - [3y - [10x - 12y]]$$

$$= 5x - [3y - [10x + 12]$$

$$= 5x - [3y - 10x + 12]$$

$$= 5x + [3y - 10x + 2x]$$

$$= 5x + [3y - 10x + 2x]$$

$$= 5x + [3y - 10x + 2x]$$

$$= 5x - [3y - 10x +$$

Exercise 8.5

Q.1. Simplify the following expressions.

(i)
$$[a+(a+(a+a+a))]$$

Sol.

$$= [a + \{a + (a + a + a)\}]$$

$$= [a + (4a)]$$

$$= [a + 4a]$$

(ii)
$$[7x - [4x + (3x - 2x)]]$$

Sol.

$$= [7x - (4x + (x))]$$

$$= [7x - (4x + x)]$$

$$= [7x - 5x]$$

$$= [2x]$$

(iii)
$$[5l - \{2m + (6m - 3m)\}]$$

Sol.

$$= [5l - (2m + (6m - 3m))]$$

$$= [5l - (2m + 6m - 3m)]$$

$$= \{5l - \{5m\}\}$$

$$= [5l - 5m]$$

$$=5l-5m=5(l-m)Ans.$$

(iv)
$$[2y + (x + x + (x - 2x + x))]$$

Sol.

$$=[2y + \{x + x + (x - 2x + x)\}]$$

$$= [2y + (x + x + (x - 2x - x))]$$

$$= [2y + \{x + x - 2x\}]$$

$$= [2y + \{2x - 2x\}]$$

= $[2y]$

(v)
$$[x^2 + (2xy + (3y^2 - 2y^2)))]$$

Sol.

$$= [x^2 + (2xy + (y^2))]$$

$$= [x^2 + (2xy + y^2)]$$

$$= [x^2 + 2xy + y^2]$$

$$= x^2 + 2xy + y^2 Ans.$$

(vi)
$$[(9a^4 + (5a^2 + (a^2 + 1))]$$

Sol.

$$=[\{9a^4+[5a^2+(a^2+1)]\}]$$

$$= [[9a^4 + [6a^2 + 1]]$$

$$= [\{9a^4 + 6a^2 + 1\}]$$

$$=9a^4+6a^2+1$$
 Ans.

7ii.
$$[x^2 + (3x^2 - (x^2 + 2x^2))]$$

Sol.

$$= [x^2 + \{3x^2 - (3x^2)\}]$$

$$= [x^2 + (3x^2 - 3x^2)]$$

$$= [x^2]$$

Sol.

$$=7l-2[15l-3m-8l-2m]$$

$$=7l-2[15l-8l-3m-2m]$$

$$=7l-2[7l-5m]$$

$$=7l-14l+10$$
m

$$= -7l + 10m \text{ Ans.}$$

$$6a + {3a + (2a + a + b)} + 6c$$

Sol.

$$= [6a + [3a + (2a + a + b)]] + 6c$$

$$= [6a + (3a + (2a + a + b))] + 6c$$

$$(ix) \quad (x^3 - x^2y^2 + x^2y) - (y^3 - x^2y^2 + xy^2) \\$$

Sol.

$$x^3 - x^2y^2 + x^3y$$
,
 $x^3 - x^2y^2 \pm y^3 \pm xy$
 $x^3 + x^2y - y^3 - xy^2$

$$= x^3 + x^2y - y^3 - xy^2$$
 Ans.

$$(x) \quad (x^2-2xy+y^2)-(2x^2-xy+y^2)$$

Sol.

$$= (3x^2 - 6xy + 3y^2) - (x^2 - xy + y^2)$$

$$3x^2 - 6xy + 3y^2$$

$$\pm 2x^2 \mp xy \pm y^2$$

$$x^2 - 5xy + 2y^2$$

$$= x^2 - 5xy + 2y^2 \text{ Ans}$$

Q.2. Subtract 2l - 3m - n from l - 4m - 6n.

Sol.

$$l-4m-6n$$

$$\pm 2l \mp 3m \mp n$$

$$-l-m-5n$$

$$=-l-m-5n$$
 Ans.

Q.3. Subtract $2a^3 - 3a^2 + 5a + 5$ from $5a^3 + a^2 + 2a - 3$.

Sol.

$$5a^{3} + a^{2} + 2a - 3$$

$$\pm 2a^{3} \mp 3a^{2} \pm 5a \pm 5$$

$$+ 3a^{3} + 4a^{2} - 3a - 8$$

$$= +3a^{3} + 4a^{2} - 3a - 8$$
 Ans.

Q.4. Subtract
$$3x^5 - 4x^4 + 8x^3 - 6$$
 form $8x^5 + 5x^4 - 3x^3 + 4x + 2$.

Sol.

$$\begin{array}{c} 8x^5 + 5x^4 - 3x^3 + 4x + 2 \\ \underline{\pm 3x^5 \mp 4x^4 \pm 8x^3 \qquad \mp 6} \\ \overline{5x^5 + 9x^4 - 11x^3 + 4x + 8} \end{array}$$

$$=5x^5+9x^4-11x^3+4x+8$$
 Ans. .

Q.5. If
$$A = a + b + c$$
, $B = a - b + c$, $C = a + b - c$
and $D = -a - b - c$ then find;

(i) A-B

Sol.

$$= A - B$$

$$= [(a + b + c) - (a - b + c)]$$

$$= [a + b + c - a + b - c]$$

$$= 2b \text{ Ans.}$$

(ii) B-C

Sol.

$$= [(a-b+c)-(a+b-c)]$$

= $[a-b+c-a-b+c]$
= $-2b+2c = 2(c-b)$ Ans.

(iii) A-C

Sol.

$$= A - C$$
= $[(a+b+c) - (a+b-c)]$
= $[a+b+c-a-b+c]$
= $2c$ Ans,

(iv) C-D

Sol.
=
$$C - D = (a + b - c) - (-a - b - c)$$
]
= $[a + b - c + a + b + c]$
= $2a + 2b = 2(a + b)$ Ans.

Exercise 3.4

Q.1. Simplify the following.

Sol.

= 2x Ans.

Sol.

= 11a Ans.

(iii)
$$(x+1) - (x-1)$$

Sol.

= 2 Ans.

(iv)
$$(m-n)-(m+n)$$

Sol.

$$m-n$$

$$= -2n$$
 Ans.

(v) (2p+q+2r)-(p+q+r)

Sol.

$$\begin{array}{c} 2p+q+2r\\ \pm p\ \pm q\pm r\\ p+r\end{array}$$

= p + r Ans.

(vi)
$$(2) - (x^2 - x^3 + 2x - 1)$$

Sol.

$$+2$$
 $\overline{+x^3 \pm x^2 \pm 2x \mp 1}$
 $x^3 - x^2 - 2x + 3$

$$= x^3 - x^2 - 2x + 3$$
 Ans.

(vii)
$$(x^3 + x^2y + xy^2 + y^3) - (x^2y + xy^2 + 1)$$

Sol.

$$\begin{array}{c} x^3 + x^2y + xy^2 + y^3 \\ \pm x^2y \pm xy^2 \pm 1 \\ x^3 + y^3 - 1 \end{array}$$

$$= x^3 + y^3 - 1$$
 Ans.

(viii)
$$(3x^2 + 6xy + 9y^2) - (2x^2 - 3xy^2 + xy^2)$$

Sol.

$$3x^2 + 6xy + 9y^2$$

$$\begin{array}{ccc} \pm \, 2x^2 & \mp \, 3xy^2 \pm xy^2 \\ x^2 + 6xy + 9y^2 & + \, 3xy^2 - xy^2 \end{array}$$

$$= x^2 + 6xy + 9y^2 + 2xy^2$$
 Ans.

```
3mn + 2lm + nl, 3nl + 2mn + lm, 3lm + 2nl + mn
iii.
Sol.
                 3mn + 2lm + nl
                 2mn + lm + 3nl
                  mn + 3lm + 2nl
                 6mn + 6lm + 6nl
                  6(lm + mn + nl)
iv. 2p + 3q, 3q + 3r, r + 3p
Sol.
                 2p + 3q
                    +3q + 3r
                  3p + r
                 5p + 6q + 4r
      b+1, a+b+2, 3, a+1
 Sol.
                     b +1
                  a + b + 2
                        +3
                        +1
                  2a + 2b + 7
 Q.5. Find A+B+C, when
       A=2a, B=3b, C=4c
 Sol.
       =A+B+C
       =(2a)+(3b)+(4c)
       =2a+3b+4c Ans.
```

```
A=x+y,B=x-2y, C=3y-x
ii.
Sol.
      =A+B+C
      = (x + y) + (x - 2y) + (3y - x)
      = x + y + x - 2y + 3y - x
     = x + x - x + y - 2y + 3y
     = x + 2y
iii. A = s+st, B = g+t, C = s+2g
Sol.
     =A+B+C
     = (s + st) + (g + t) + (s + 2g)
     = s + st + g + t + s + 2g
     =2s+st+t+3g Ans.
iv. A=p+q+r, B=p+q-2r, C=p-2q-r
Sol.
     =A+B+C
     =(p+q+r)+(p+q-2r)+(p-2q-r)
     = p + q + r + p + q - 2r + p - 2q - r
     = p + p + p + q + q - 2q - 2r
     =3p + (-2r)
     =3p-2r Ans.
     A = lm + mn, B = mn + nl, c = nl + lm
Sol.
     =A+B+C
     =(lm + mn) + (mn + nl) + (nl + lm)
     = lm + mn + mn + nl + nl + lm
     = lm + lm + mn + mn + nl + nl
     = 2lm + 2mn + 2nl
     =2(lm+mn+nl) Ans.
```


Mehak, Naz and Kinza have m, 2n and 31 books respectively. How many books have they altogether?

Books of Mehak = m Books of Naz = 2n Books of Kinza = 31

Total books = m + 2n + 3l. Ans.

Zain had x candies. He bought more 2x candies and y candies. Find the sum of the candies that he has now.

Sol.

Zain had candies = x He bought more candies = 2x and y Sum of candies = x + 2x + y= 3x + y Ans.

Add the following

ab, bc, bc, bc, Sol. be bc ab + 3bc

= b(a + 3c) Ans.

Sol. $2x^2y$ x2y +xy2 $3x^2y + xy^2$ = 3xy (3x + y) Ans.

ii. 2x2y, x2y, xy2

iii. 6m3, 2m2, 1, 3m2 x^{2} , -xy, y^{2} , -xySol. Sol. $6m^3$ $+2m^{2}$ +3m2 $6m^3 + 5m^2 + 1$ $x^2 - 2xy + y^2$ $=6m^3+5m^2+1$ Ans. $= x^2 - 2xy + y^2$ b2, 3ab, 4ab, 2a2 Sol. Sol. b^2 +3ab +4ab -q-r+2a p-3q-r $2a^2 + b^2 + 7ab$ = p - 3q - r $=2a^2+b^2+7ab$

Q.4. Find the sum of the following algebraic expressions

i.
$$a^2 + 2ab + b^3$$
, $a^2 - 2ab + b^2$, $a^2 - ab - b^2$
Sol.

$$a^{2} + 2ab + b^{2}$$

$$a^{2} - 2ab + b^{2}$$

$$a^{2} - ab - b^{2}$$

$$3a^{2} - ab + b^{2}$$

ii.
$$x^3y + 2x^2y + y^2$$
, $x^3y + x^2 + 2y^2$, $x^2y - 2x^3y - y^2$
Sol.

$$x^{6}y + 2x^{2}y + y^{2}$$

 $x^{3}y + 2y^{2} + x^{2}$
 $-2x^{3}y + x^{2}y - y^{2}$
 $3x^{3}y + 2y^{2} + x^{2}$

2.1. Simplify	iv. a + 9a + 3b Sol. 8 9a 3b 10a + 3b = 10a + 3b Ans. v. 3p + q + 2q Sol.	vii. 11a + 6a + 2a + 9b Sol. 11a 6a 2a + 9b 19a + 9b = 19a + 9b Ans. viii. m +2n+3n + 4n Sol.	ix. x + y + z + 2x + z Sol. x +y +z 2x +z 3x + y + 2z = 3x + y + 2z Ans, x. p+2q+q+r+2p	
ii. 2y + 3y + 4y Sol. 2y 3y + 4y 9y = 9y Ans. iii. 6m + 3m + m	3p q $+2p$ $5p+q$ $=5p+q$ Ans, vi. $x+y+x+2y$ Sol.	9n + m 9n + m = 9n + m Ans.	Sol. p +2q q +r 2p 3p+3p+r = 3p+3q+r Ans.	
Sol. 6m 3m + m 10m = 10 m Ans.	x x + 2y 2x + 3y = 2x + 3y Ans.	 Q.2. Answer the following questions. i. Ifra had 2p chocolates. She bought q more chocolates. How many chocolates she has now? Sol. Ifra has chocolates = 2p She bought more chocolates = q Total chocolates = 2p + q Ans. 		

iii. xy. xy v. pq.pq.pq Sol. Sol. $= x^2y^2$ iv. m.m.m vi. abc.abc Sol. $= m^4$ $a^2b^2c^2$

Q.4. Separate the terms of the following algebraic sentences.

i. 2a+3b Sol. = 2a + 3b= 2a, 3b Ans. ii. l-2m+4nSol. = l - 2m + 4n= 1, 2m and 4n Ans. iii. 9a2-12b2 Sol: $=9a^2-12b^2$ $=9a^2, -12b^2$ iv. $p^2 + 2q^2 - r^2$ Sol. $= p^2 + 2q^2 - r^2$ $= p^2$, $2q^2$, $-r^2$ v. a+8b-4c Sol. = a + 8b - 4c= a, 8b and -4c Ans.

vi. $2l\mathbf{m} - 3\mathbf{m}\mathbf{n} - 4\mathbf{n}l$ Sol. = $2l\mathbf{m} - 3\mathbf{m}\mathbf{n} - 4\mathbf{n}l$ = $2l\mathbf{m}$, $-3\mathbf{m}\mathbf{n}$, $-4\mathbf{n}l$ vii. $3\mathbf{x}\mathbf{y} + 4\mathbf{x}^2\mathbf{y} + 9$ Sol. = $3\mathbf{x}\mathbf{y} + 4\mathbf{x}^2\mathbf{y} + 9$ = $3\mathbf{x}\mathbf{y} + 4\mathbf{x}^2\mathbf{y} + 9$ = $3\mathbf{x}\mathbf{y} + 4\mathbf{x}^2\mathbf{y} + 9$ viii. $\frac{2}{5}\mathbf{x}\mathbf{y} + \frac{1}{3}\mathbf{y}\mathbf{z} + \frac{3}{5}\mathbf{x}\mathbf{z}$ Sol. = $\frac{2}{5}\mathbf{x}\mathbf{y} + \frac{1}{3}\mathbf{y}\mathbf{z} + \frac{3}{5}\mathbf{x}\mathbf{z}$ = $\frac{2}{5}\mathbf{x}\mathbf{y} + \frac{1}{3}\mathbf{y}\mathbf{z} + \frac{3}{5}\mathbf{x}\mathbf{z}$ ix. $\frac{a}{b} + \frac{b}{c} + \frac{c}{a}$ Sol. = $\frac{a}{b} + \frac{b}{c} + \frac{c}{a}$ = $\frac{a}{b} + \frac{b}{c} + \frac{c}{a}$ = $\frac{a}{b} + \frac{b}{c} + \frac{c}{a}$

Here & C

Q.5. Write the algebraic expressions by adding the following terms.

i. a, b

Sol.

= a + b Ans.

ii. x,-y Sol.

= x + (-y)

= x - y Ans,

iii. l, m, -n

Sol.

= l, m, -n

= l + m + (-n)

= l + m - n

iv. p, pq, qr

Sol.

= p + pq + qr Ans.

v. xy², xz², yz²

Sol.

 $\approx xy^2 + xz^2 + yz^2$

vi. $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$

Sol.

$$=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$$

vii. 16a2 - 8b2

Sol.

 $= 16a^2 + (-8b^2)$

 $= 16a^2 - 8b^2$ Ans.

viii. $\frac{l}{m}, \frac{m}{n}, \frac{n}{l}$

Sol.

$$=\frac{l}{m}-\frac{m}{n}-\frac{n}{l}$$

ix. 2ab, 4ac, -3bc

Sol.

= 2ab, 4ac, -3bc

= 2ab+ 4ac+(-3bc)

= 2ab+ 4ac-3bc °

Exercise 3.2

- Q.1. Write each of the following word expressions into algebraic sentences.
- i. x plus y

Sol

x + y Ans:

ii. a minus b

Sol.

a-b Ans.

iii. m multiplied by n

Sol.

m×n. Ans.

v. p divided by q

Sol.

P Ans.

v. The sum of 3x and 2y

Sol.

3x + 2y Ans.

vi. The difference of 5a and 4b

Sol.

5a-4b Ans.

vii. The product of x and y

Sol.

xy

viii. The sum of the p and q divided by r.

Sol.

<u>p+q</u> r x. Half of *l* multiplied by the difference of n and m. (m is less than n)

Sol.

 $\frac{l}{2} \times (n-m)$

Q.2. Write the co-efficient, base and exponent of the following.

. 5x

Sol.

Co-efficient = 5

Base = x

Exponent = 1 ii. 16p²

Sol.

Co-efficient = 16

Base = p

Exponent = 2

lii. 18*[*3

Sol.

Co-efficient = 18

Base = I

Exponent = 3

iv. -6k⁵ Sol.

Co-efficient = -6

Base = k

Exponent = 5

 $v,\frac{2}{3}\,q^{-1}$

Sol.

Co-efficient $=\frac{2}{3}$

Base = q Exponent = -1

vi. \frac{1}{3} y \frac{1}{3}

Sol.

Co-efficient = $\frac{1}{3}$

Base = y Exponent = -2

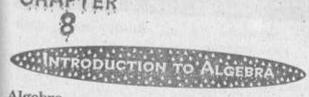
Q.8. Write the following in the exponential form:

a.a.a.

Sol.

ii. x.x Sol. = x²

Exercise 3.1


- Q.1. Separate true, false and open statements.
- i. 5 is a natural number.
- Ans. True sentence
- ii. (5+4) 2 = (6+8)+2
- Ans. True sentence
- iii. 9 is a prime number.
- Ans. False sentence
- iv. 8+ = 4
- Ans. Open sentence
- v. $5 \times \Delta = 15 + O$
- Ans. Open sentence
- vi. -1 is a whole number
- Ans. False sentence
- vii. $5 \times 6 = 4 \times 8$
- Ans. False sentence
- viii. 0.2 + 0.5 =
- Ans. Open sentence
- ix. 2 is the only even prime number.
- Ans. True sentence
- Q.2. Replace the unknowns by the numbers to make the statement true.
- i. x+2=6
- Sol.
- x + 2 = 6
- x = 6 2
- x = 4 Ans.

- ii. p-1=7
- Sol.
- p 1 = 7
- p = 7 + 1 = 8 Ans.

- iii. m + 15 = 20 Sol.
 - m + 15 = 20m = 20 - 15
 - m = 5 Ans.
- iv. 6x = 48 Sol.
 - 6x = 48
 - $x = \frac{48}{6} = 8$
- x = 8 Ans. $5 \times x = 75$
- Sol.
 - $5 \times x = 75$ 75
 - $x = \frac{75}{5} = 15$ x = 15 Ans.
- vi. $\frac{2}{3}$ m = $\frac{14}{3}$
- Sol.
- (2m)(3) =(14)(3)
- 6m = 42
- $m = \frac{42}{6} = 7$ m = 7
- Vii. $\frac{1}{2}$ + m = 15
- Sol.
- $\frac{1}{2} + m = 15$
- $\frac{1}{2}\times\frac{1}{m}=15$
- $\frac{1}{2m} = 15$

- $\frac{1}{m} = 15 \times 2$
- $\frac{1}{m} = 30$
- $m = \frac{1}{30}$ Ans.
- viii. 2m = 3 Sol.
 - 2m = 3
 - $m = \frac{3}{2}$
- m = 1.5 Ans.
- ix. x 0.3 = 0.4Sol.
 - x 0.3 = 0.4
 - x = 0.4 + 0.3x = 0.7
- x. x + 2 = 7 Sol.
 - x + 2 = 7
 - $x = 7 \times 2$ x = 14
- xi. 5 + p = 11
- Sol. 5 + p = 11
 - p=11-5 p=6
- xii. 0.4 m = 0.8
- Sol. 0.4 m = 0.8
 - $m = \frac{0.8}{0.4}$
 - m = 2 Ans.

Q.2.	Fill in	the bla	nks (Dbj.	Ex. 7)	
i.	1/100 means percent and is denoted by					
ii.	The price that we pay to purchase a thing, is called					
iii.	Profit percentage = $\frac{\text{Profit}}{\cdot} \times 100$					
ív.		nge a per t it into a		a dec	imal, first,	we
Ans	wers:					ď.
	i.	%	ii.	C	ost price	
	iii.	Cost price	iv	. fr	action	
Q.3.			orrect an	swer.		
i.	we get	2		$\frac{1}{25}$ in 25 %	d. 0.4 %	
	a. 1 %	0.4	ж с.	20 %	0, 0,4 %	0
ii.	By ch	anging 109	6 into a dec	imal. v	ve get	
		b. 1		Control of the last of the las	d. 0.01	
iii.		1000 mea				+
HALC:	a. 1	b. 1	0 c.	100	d. 1000	
iv,	The co	loured par	ts of	19	11111	ire
	a. 3%	b. 3	10% c.	7%	d. 70%	
v.			alculated a			
Bir			ale price c	F-57/ - 11	THE REAL PROPERTY.	
Ans	wers:			The state of		
	E h	ii. c	iii. b	TV.	b v.n	

Algebra

Algebra is a general form of the arithmetic.

Variable 1

In algebra, a letter is used as symbol of any number or value which is called a variable.

Coefficient

The multiplying factor of a variable is called is coefficient.

Algebraic Expressions

The expressions in which the numbers or variables or both are connected by operational signs are called algebraic expression.

Constant

A constant is a quantity which has a fixed numerical value.

Like terms

The terms of same kind only differ by their coefficients are called like terms.

Evaluation

The process of finding the absolute or numerical value of an expression by using numbers in place of variables is called evaluation.

(Key. Er. 7)

Loss percentage =
$$\frac{\text{Loss}}{\text{Cost price}} \times 100$$

= $\frac{300}{5800} \times 100$
= 5.17 % Ans.

Q.7. A dealer bought 18 toy chairs at Rs. 65 per chair he sold 12 of them at Rs. 75 each and the remaining chairs at Rs. 60 each. Find his profit or loss %.

Sol.

Cost price of 18 chairs = $18 \times 65 = Rs.1170$

Sale price = $12 \times 75 = \text{Rs.}900$

S.P of 6 chairs = $6 \times 60 = 360$

Total sale = 900 + 36 = Rs.1260

Profit = 1260 - 1170 = Rs.90

Profit
$$\% = \frac{90}{1170} \times 100$$

= 7.7 %

Q.8. Fatima bought a doll for Rs.440 after getting a discount 20%. Find the marked price of the doll.

Sol.

Discount
$$=\frac{20}{100} \times 440$$

= Rs. 88

Marked price = Cost price + Discount

=440 + 88

Q.9. A mobile is sold for Rs.2160 after giving a discount, If marked price is Rs.2700, find the discount percentage.

Sol.

Sale price = Rs.2160

Market price = Rs.2700

Discount = 2700 - 216 = Rs.540

Marked price: Discount

2700 : 540

100 : ;

 $\frac{x}{540} = \frac{100}{2700}$

 $x = \frac{540 \times 100}{2700}$

x = 20 % Ans.

Objective Exercise 7

Q.1. Answer the following questions.

Define the percentage.

Ans. Any fraction with 100 as a denominator is called a percentage.

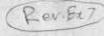
ii. What we do to change a fraction into percentage?

Ans. We multiply it by 100 to change a fraction into percentage.

iti. Write the formula for finding the profit.

Ans. Profit = Sale-price - Cost price

iv. What is meant by percent?


Ans. Percent means divided by 100.

v. What is the formula of finding a discount?

Ans. Discount = Marked price - Sale price

What percent of amount did he spend?

Sol.

$$=\frac{156}{1200}\times 100$$

$$=\frac{156}{12}$$

Q.3. In a town election, Azeem got 42% of the votes cast and remaining got Hamza. If the total number of votes cast is 40,000. Find the votes obtained by Hamza.

Sol.

Total no of votes = 40,000

Votes got by Azeem = $\frac{42}{100} \times 40000$

=16800

Votes obtained by Hamza = 40000 - 16800

=23200

Q.4. Nabeel traveled 75km by bus and 125 km by train. Find what percent of the total journey did he travel by bus and what percent by train?

Sol.

Travel by bus 75 km Travel by train 125 km Total journey 200 km Percentage travel by bus =

37.5 %

Percentage travel by train =
$$\frac{125}{200} \times 100$$

= 62.5 %

Q.5. A shopkeeper bought a pair of shoes for Rs. 720 and sold it for Rs. 810. Find his profit percent.

Sol.

Cost price Rs. 720 Sale price

Profit

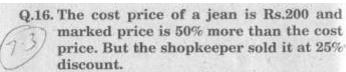
Rs. 810 Sale price - Cost price

Rs. 810 - Rs. 720

Rs. 90 *

Profit percentage

of boar


Ans.

$$\frac{90}{720} \times 100$$

Q.6. Komal bought a sewing machine for Rs. 5800. Due to some defects in the machine, she sold it for Rs. 5500. Find her loss percentage.

Sol.

Cost price-Rs. 5800 Sale price Rs. 5500 Loss = Cost price - Sale price

i. Find the marked price.

ii. Find the discounted price.

Sol.

Cost price of jean = Rs.200

Marked price = 50% more than cost price

Marked price =
$$\frac{50}{100}$$
 200 = Rs.100

i. So marked price = 200 + 100 = Rs.300.

ii. Discounted price = $300 - \frac{25}{100} \times 100$ = 300 - 75

= Rs.225 Ans.

Q.17. Find the marked price when 9% discount is Rs.81.

Sol.

Discount = 9%

Discount = Rs.81

Marked price =
$$\frac{100}{9} \times 81$$

= Rs.900 Ans.

Q.18. Find the marked price of a pair of shoes, when its sale price is Rs.360 and discount percentage is 18%.

Sol.

Sale price = Rs.360

Discount percentage = 18%

Marked price =?

Let marked price = Rs. x

Then

x - 18% of x = 360

x - 0.18x = 3600.82x = 360

 $x = \frac{360}{0.82}$

x = Rs,439

Marked price of pair of shoes = Rs.439Ans.

Review Exercise 7

Q.1. Find the percentage of the following.

i Rs. 20 out of Rs. 250

Sol.

$$\frac{20}{250}\times 100$$

= 8 %

ii. 30 kg out of 260 kg

Sol.

$$\frac{30}{260} \times 100$$

= 11.53 %

iii. 250 marks out of 300 marks.

Sol.

$$=\frac{250}{300}\times 100$$

= 83.33 %

iv. 24 min out of 1 hour

$$=\frac{24}{60} \times 100$$

Find that sheikh Khalid is in profit or

Find profit or loss percentage. ii. Sol.

> Cost of 80 metres cloth = Rs.2240 Sale price of 50m cloth = $50 \times 30 = Rs.1500$ Sale price of 30 m cloth = $30 \times 35 = Rs.1050$ Sale price of 80 m cloth = Rs.1500 + Rs.1050 = Rs. 2550

As S.P > C.P So Khalid is in profit

Profit = 2550 - 2240

Profit = Rs.310

Profit percentage = $\frac{610}{2240} \times 100$

=2240

Ans.

= 13.84 %

Q.13. Gul Khan purchased 180 chocolates for Rs.2,160. He sold 155 chocolates at the rate of Rs. 15 each and 25 chocolates at the rate of Rs. 10

4. Find that he is in profit or loss.

ii. Fin profit or loss percentage.

Sol.

Cost price of 180 chocolates = Rs.2,160 Sale price of 155 chocolates = 15×155

= Rs. 2325

Sale price of 25 chocolates = 25×10 = Rs.250 = Rs. 2527

Since S.P > C.P

So,

Gul Khan in profit

Profit percentage = $\frac{110}{2160}$

Ans. Q.14. A shirt priced for Rs.150 is sold for Rs.120. Find the percentage discount.

= 19.21%

Sol.

Shirt priced at = Rs.150

Sale price = Rs.120

Discount = 150 - 120 = Rs.30

% discount = $\frac{30}{150} \times 100$

= 20% Ans.

Q.15. Sarah bought a dinner set for Rs. 480 at 20% discount. Find the actual prices of the dinner set.

Sol.

Let actual price of dinner set = Rs. x

Then

x - 20% of x = 480

$$x - \frac{20}{100} \ x = 480$$

$$x(1-0.2) = 480$$

$$x(0.8) = 480$$

$$x = \frac{480}{0.8} = Rs.600$$

So original price of dinner set

= Rs.600.

Ans.

The cost price of 25 pairs of shoes is Rs.190 each. Find the sale price of each of them, when the retailer has a total gain of Rs. 2875.

Sol.

Cost price of 1 pair = Rs. 190 Cost price of 25 pairs = Rs. 4750 Total profit = Rs. 2875 Sale price = Cost price + Total profit = Rs. 4750 + Rs. 2875 Sale price = Rs. 7625 Sale price of each pair = Rs. $\frac{7625}{25}$

. 25% loss on a mobile set is Rs. 475. Find

the cost and sale price of the mobile set.

= Rs. 305

Ans.

Sol.

 $\begin{aligned} & \text{Loss} = 25\% \\ & \text{Loss price} = \text{Rs.475}. \\ & \text{C.P} = \frac{475}{25} \times 100 = \text{Rs.1900} \\ & \text{S.P} = \text{C.P} - \text{L.P} \\ & = 1900 - 475 = \text{Rs.1425} \end{aligned}$

 The profit percentage on a bicycle is 40%. Find the cost and sale price of the bicycle when the shopkeeper got a profit of Rs. 500.

Sol.

Profit = 40% Profit = Rs.500

$$\begin{aligned} \text{C.P} &= \frac{\text{profit}}{\text{profit}\%} & \times 100 \\ &= \frac{500}{40} \times 100 = \text{Rs.}1250 \end{aligned}$$

- The cost price of 18 sweaters is Rs.425 per sweater, and the total gain of shopkeeper is Rs.6750.
 - i. Find the sale price of each sweater.
 - i. Find profit percentage

Cost price of 1 sweater = Rs. 425Cost price of 18 sweaters = Rs. 425×18 = Rs. 7650

i. Sale price of each sweeter =
$$\frac{14400}{18}$$

i. Profit Percentage
$$= \frac{\text{Profit}}{\text{Cost price}} \times 100$$

$$= \frac{6750}{7650} \times 100$$

$$= 88.23 \%$$

Q.5. Saleem bought 90 oranges at the rate of 3 oranges for Rs. 10 and sold them at the rate of 2 oranges for Rs. 9. Find that Saleem is in profit or loss and also find its percentage.

Sol.

Cost price of 3 oranges = Rs. 10

Cost price of 1 orange = $\frac{10}{3}$ = Rs. 3.33

Cost price of 90 oranges = Rs. 300

Sale price of 2 oranges = Rs. 9

Sale price of 1 oranges = Rs. 4.5

Sale price of 90 oranges = Rs.405

Profit = Sale price - Cost price

= Rs. 405 - Rs. 300 = Rs. 105

Profit Percentage =
$$\frac{\text{Profit}}{\text{Cost Price}} \times 100$$

= $\frac{105}{300} \times 100$

= 35 % Ans.

Q.6. Shahid bought 80 bananas at the rate of 4 bananas for Rs. 5 and sold at the rate of 5 bananas for Rs. 8. Find that he is in profit or loss and also find its percentage, when 25% of bananas have been spoiled.

Sol.

. . Cost price of 4 bananas = Rs. 5 Cost price of 1 banana Rs. 1.25 Cost price of 80 bananas = Rs. 100

Spoiled bananas = $25\% = \frac{25}{100} \times 80 = 20$

Remaining bananas = 80 - 20 = 60

Sale price of 5 bananas = Rs. 8

Sale price of banana = Rs. 1.6

Sale price of 60 bananas = Rs. 96

Loss = Cost price - Sale price

= Rs. 100 - Rs. 96

- Rs. 4

Loss Percentage =
$$\frac{\text{Loss}}{\text{Cost price}} \times 100$$

$$= \frac{4}{100} \times 100$$
= 4 % Ans.

Q.7. 12% profit on a computer is Rs.540

- Fina the cost price of the computer
- Find the sale price of the computer ii.

Sol.

Profit percentage =
$$\frac{Profit}{Cost price} \times 100$$

$$12 \% = \frac{540}{\text{Cost price}} \times 100$$

$$\frac{12}{100}$$
 × Cost price = 540×100

Cost price =
$$\frac{540}{12} \times 100$$

Cost price = 4500

Profit = Sale price - Cost Price

Profit = 540 + 4500

= Rs.5040 Ans.

$$x = 50$$

Cost price = Rs. 50

Profit = Sale price - Cost price = Rs. 70 - Rs. 50

= Rs. 20

Ans.

Q.2. A shopkeeper sold a toy for Rs. 96 at a loss of 20%. Find the loss.

Sol.

Sale price

Loss % 20%

Loss

?

Let Cost price is Rs. 100, the sale price will be,

Cost price - Loss Sale price =

Rs. 100 - Rs. 20

Rs. 80

Cost price : Sale price

100:80

x :96

Resolve $\frac{x}{100} = \frac{96}{80}$

$$x = \frac{96}{80} \times 100^3$$

Cost price = Rs. 120

Loss = Cost price - Sale price

= Rs. 120 - Rs. 96

=Rs. 24

Loss Rs. 24

Q.3. Chand bought a shirt for Rs. 250 and sold it for Rs. 295. Find the profit percentage.

Sol.

Cost price = Rs. 250

Sale price = Rs. 295

Sale price - Cost price Profit

Rs. 295 - Rs. 250

Rs. 45

 $\frac{\text{Profit}}{\text{Cost Price}} \times 100$ Profit percentage

$$=\frac{45}{250} \times 100$$

= 18 % Ans.

= 18 %

Q.4. Waleed bought one dozen pens for Rs. 144 and sold each of them for Rs. 11. Find the loss percentage.

Sol.

Cost price of one dozen. Pens = Rs. 144

Sale price of one pen = Rs. 11

Sale price of one dozen pens = 12×11 = Rs. 132

Loss = Cost price - Sale price

= Rs. 12

Loss Percentage

$$=\frac{12}{144}\,\times 100\,=\frac{100}{12}$$

= 8.33%

Ans.

save the remaining. Find the percentage of his saving.

Sol. 1440

 $\frac{1440}{2000} \times 100 = 72 \%$

Saving = 100 - 72 = 28% Ans.

Q.11. A shoe company found that 4.25% of the production is defective. The company made 28000 pairs of shoes. How many pairs of shoes are defective?

Sol.

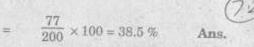
 $\frac{4.25}{100} \times 28000 = 1190$ Ans,

Q.12. Find the actual amount if 40% of the amount is 60 rupees.

Sol.

= 40 % of 60= $\frac{60}{40} \times 100 = 150$ Ans.

Q.13. Bano spends 70% of her pocket money and saves 30%. Find the amount she spends and saves. Where as she gets Rs. 1800 as the pocket money.


Sol.

 $\frac{70}{100} \times 1800 = R.1260$ $\frac{30}{100} \times 1800 = R.540$

Q.14. 200 litres pure milk contains 77 liters cream. What is the percentage of cream in pure milk?

de a la

Sol.

Q.15. Every 3 persons are using tobacco out of 5 persons in Pakistan. What is the percentage of tobacco users?

Sol.

$$=$$
 $4\frac{3}{5} \times 100 = 60 \%$ Ans.

Exercise 7.3

Q.1. A book seller sold a book for Rs. 70 at a gain of 70%. Find the profit.

Sol.

Sale price = Rs. 70

Profit % = Rs, 40 %

Profit =?

Let the cots price is Rs. 100, then the sale price will be = Cost price + profit

Cost Price : Sale price

100 : 140

x. : 70

 $\frac{x}{100} = \frac{70}{140}$

$$x = \frac{70}{140} \times 10^{\circ}$$

$$x = \frac{700}{14}$$

Sol.

$$60\% \text{ of road} = 75$$

= $\frac{75}{60} \times 100$

= 125 km Ans.

Q.5. Sana got 484 marks out of 550 marks. Find the percentage of her marks.

Sol.

484 marks out of 550

$$=\frac{484}{550}\times100$$

= 88 %

Ans.

Q.6. In a town 35% of 15000 voters did not cast vote in an election. How many people did not cost vote?

Sol.

Total = 15000

Cast vote = 35 %

$$=\frac{15000 \times 35}{100}$$

= 5250

Not cast = 15000 - 5250 = 9750 Ans.

Q.7. In a test match Shoaib Malik made 134 runs in the first innings and 41 runs in the second innings. Find the percentage of Shoaib's score if total score in both innings of Pakistan was 500 runs.

Sol.

First innings =
$$\frac{134}{500} \times 100 = 26.8 \%$$

Second innings
$$=\frac{41}{500} \times 100 = 8.2 \%$$

Total Score = 26.8 + 8.2

= 35 %

Ans.

Q.8. Farooq paid 25% of salary as a house rent and 50% of salary for other expenses. Find the remaining amount if his salary is Rs.8000.

Sol.

$$=\frac{25}{100}\times8000=2000$$

$$=\frac{50}{100}\times8000=4000$$

$$=8000-6000$$

= Rs.2000

Ans.

Q.9. Shakeel had Rs. 7500. He paid a debt of Rs.1500. Find the percentage of the remaining amount.

Sol.

Paid = Rs.7500

Debt = Rs.1500

Remaining = 7500 - 1500 = Rs.6000

Percentage =
$$\frac{6000}{7500} \times 100$$

= 80 % - Ans.

ii. 64 % of 25

Sol.

$$= \frac{64}{100} \times 25 = 16$$

iii. 75 % of 4

Sol.

$$=\frac{75}{100}\times 4=3$$

iv. 3.5 % of 1000

Sol.

$$=\frac{3.5}{100}\times1000=35$$

v. 50 % of 180

Sol.

$$=\frac{50}{100} \times 180 = 90$$

vi. 90 % of 190

Sol.

$$=\frac{90}{100}\times190=171$$

vii. 65 % of 60

Sol.

$$=\frac{65}{100}\times 60=39$$

viii. 18% of 1400

Sol.

$$=\frac{18}{100}\times1400=252$$

ix. 18.5 % of 2000

Sol.

$$=\frac{18.5}{100} \times 2000 = 370$$

Sol.

$$=\frac{9.5}{100}\times3000=285$$

Exercise 7.2

Q.1. Saeed has Rs. 75. He gives 20% of its as alms. What remains with him?

Sol.

Alms
$$\stackrel{j}{=} \frac{20}{100} \times 75$$

= Rs. 15

Remaining = 75 - 15 = Rs.60 Ans.

Q.2. Komal made a suit of 5.5 meters cloth out of 44 meters. What percentage of the cloth did she use for the cloth?

Sol.

$$=\frac{5.5}{44} \times 100$$

= 12.5 % Ans.

Q.3. 85% of the students in a school of 300 students passed an annual examination. How many of them are fail.

Sol.

$$= \frac{85}{100} \times 300 = 255$$
$$= 255$$

Failed student = 300 - 255 = 45 Ans.

vi. 510 marks out of 850 marks.

Sol.

Fraction = $\frac{510}{850} = \frac{3}{5}$

Decimal = 0.6

Ratio = 510:850 = 3:5

Percentage = 60 %

vii. 700 g out of 2 kg

Sol.

$$Fraction = \frac{700}{2000} = \frac{7}{20}$$

Decimal = 0.35

Ratio = 700: 2000 = 7: 20

Percentage = 35 %

viii. 42 students out of 75 students

Sol.

Fraction =
$$\frac{42}{75}$$
 = $\frac{14}{25}$

Decimal = 0.56

Ratio = 42:75 = 14:25

Percentage = 56 %

ix. Rs. 900 out of Rs. 4500

Sol.

Fraction =
$$\frac{900}{4500}$$
 = $\frac{1}{5}$

Decimal = 0.2

Ratio = 900 : 4500 = 1 : 5

Percentage = 20 %

x. Rs. 245 out of Rs. 9800

Sol.

$$Fraction = \frac{245}{9800} = \frac{1}{40}$$

Decimal = 0.025

Ratio = 245 : 9800 = 1 : 40

Percentage = 2.5 %

xi. 1.5 liters out of 90 liters

Sol.

Fraction =
$$\frac{1.5}{90}$$
 = $\frac{1}{60}$

Decimal = 0.017

Ratio = 1.5:90 = 1:60

Percentage = 1.67 %

xiii. 125 ml out of 1 liters.

125:1000

Fraction =
$$\frac{125}{1000}$$
 = $\frac{1}{8}$

Decimal = 0.125

Ratio =
$$\frac{125}{1000}$$
 = 1:8

Percentage =
$$\frac{125}{10}$$
 %

Q.4. Find the following percentages

8 % of 50

$$=\frac{8}{100}\times 50=4$$

XII. 160 %

Sol.

Fraction =
$$\frac{160}{100} = \frac{8}{5} = 1\frac{3}{5}$$

Decimal = 1.6

Q.2. Convert the following into percentages

Sol.
$$=\frac{1}{2} \times 100 = 50 \%$$

ii. 0.25

Sol.
$$=\frac{25}{100} \times 100 = 25 \%$$

iii.
$$\frac{7}{2}$$

Sol.
$$=\frac{7}{2} \times 100 = 350 \%$$

iv.
$$\frac{1}{8}$$

Sol.
$$=\frac{1}{8} \times 100 = 12.5 \%$$

 $v. \frac{3}{10}$

Sol.
$$=\frac{3}{10} \times 100 = 30 \%$$

vi.
$$\frac{9}{20}$$

Sol.
$$=\frac{9}{20} \times 100 = 45 \%$$

vii. 0.59

Sol.
$$=\frac{59}{100} \times 100 = 59 \%$$

viii. 3.8

Sol.
$$=\frac{38}{10} \times 100 = 380 \%$$

Q.3. Use fraction, decimal, ratio and percentage to express the following situations.

i. 50 marks out of 100 marks

Sol.

Fraction =
$$\frac{50}{100} = \frac{1}{2}$$

Decimal = 0.5.

Ratio = 50: 100 = 1:2

Percentage = 50 %

90 meters out of 150 meters

Sol.

Fraction =
$$\frac{90}{150} = \frac{3}{5}$$

Decimal = 0.6

Percentage = 60 %

iii. 48 min out of 1 hour

Sol.

Fraction =
$$\frac{48}{60} = \frac{4}{5}$$

Decimal = 0.8

Percentage = 80 %

iv. 8 months out of 1 year

Sol.

Fraction =
$$\frac{8}{12} = \frac{2}{3}$$

Decimal = 0.67

Percentage = 66.67 %

6 egg out of 2 dozen eggs.

Sol.

Fraction =
$$\frac{6}{24} = \frac{1}{4}$$

Decimal = 0.25

Percentage = 25 %

Exercise 7.1

Q.1. Express the following in fractions and decimals.

i. 45 %

Sol.

Fraction =
$$\frac{45}{100} = \frac{9}{20}$$

Decimal =
$$\frac{45}{100} = 0.45$$

ii. 6%

Sol.

Fraction
$$=$$
 $\frac{6}{100} = \frac{3}{50}$

Decimal =
$$\frac{6}{100} = 0.06$$

iii. 56%

Sol.

Fraction =
$$\frac{56}{100} = \frac{14}{25}$$

Decimal =
$$\frac{56}{100} = 0.56$$

iv. 96 %

Sol.

Fraction =
$$\sqrt{\frac{96}{100}} = \frac{24}{25}$$

Decimal =
$$\frac{96}{100} = 0.96$$

v. 18 %

Sol.

Fraction
$$=$$
 $\frac{18}{100} = \frac{9}{50}$

* Decimal = 0.18

vi. 48%

Sol.

Fraction
$$=$$
 $\frac{48}{100} = \frac{12}{25}$

Decimal = . 0.48

vii. 78 %

Sol.

Fraction =
$$\frac{78}{100} = \frac{39}{50}$$

Decimal = 0.78

viii. 89 %

Sol.

Fraction
$$=$$
 $\frac{89}{100} = \frac{89}{100}$

Decimal = 0.89

ix. 68 %

Sol.

Fraction =
$$\frac{68}{100} = \frac{17}{25}$$

x. 15 %

Sol.

Fraction =
$$\frac{15}{100} = \frac{3}{20}$$

Decimal = 0.15

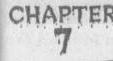
xi. 350 %

Sol.

Fraction =
$$\frac{350}{100} = \frac{7}{2} = 3\frac{1}{2}$$

Decimal = 3.5

Q.2. Fill in the blanks. The simplest form of a _ is the same as the lowest form of a fraction. The second and third elements of the proportion are called as _ proportion is the relation in which one quantity increase or decrease in a same proportion by increasing or decreasing the other quantity. Answers: means of ratio ratio Direct proportion iii. Q.3. Tick(v) the correct answer. A ratio is written by putting. a.: b., a:b = c:d, if and only if $a \times c = b \times d$ $a \times b = c \times d$ $e \times d = a \times b$ $b \times c = a \times d$ The reduced form of $\frac{1}{4}:\frac{1}{2}$ is c. 2:1 d. 1:2 b. 4:2 a. 2:4 10:15 is an equivalent ratio of d. 3:2 a. 15:10 b. 2:3 c. 2:5 The relation of equality of two ratio is called as b. Proportion


a. ratio

Answer:

i.a

c. equivalent ratio

ii. c

Percentage

Any ratio with a second term of 100 or any fraction with 100 as a denominator is called a percentage.

Profit

If selling price is greater than cost price, then it is called profit, i.e. Profit = Sale price - Cost price

Loss

If cost price is greater than sale price, it s called loss i.e.

Loss = Cost price - Sale price

Profit or Loss percent

We calculate the profit or loss as a percentage of the cost price.

Profit % =
$$\frac{\text{Profit}}{\text{Cost Price}} \times 100$$
Loss % = $\frac{\text{Loss}}{\text{Cost price}} \times 100$

Discount

d.Cross multiplication

 $iii.\ a \qquad iv,b \qquad v.b$

The difference between marked price and sale price is called discount.

Q.4. Ali, Usman and Waleed distribute an amount in the ratio of 2:5:3. Find the amount of Usman and Waleed if Ali gets 170. Also the total amount

Sol.

Ali: Usman: Waleed

2: 5:3

 $2 \times 85 : 5 \times 85 : 3 \times 85$

170:425:255

Total = 170 + 425 + 255

= 850 Ans.

Usman's amount = Rs.425 Waleed's amount = Rs.255

Q.5. Aliha takes 200 steps for walking distance of 160m. Find the distance covered by her in 350 steps.

Sol.

200:160 ::350:x

200 x = 56000

56000 200

x = 280Ans.

Q.6. If a car need 9 liters of patrol for a journey of 162 km. Find how many liters of petrol is required for 306 km?

Sol.

9:162 ::x:306

162 x = 2754

2754 162

x = 171

Q.7. An army camp of 200 has enough food ox for 60 days. How long will the food las if the number of man in the camp is reduced to 160?

Sol.

Men: food

200 : 60

160: x

 $200 \times 60 = 160x$

 200×60 160

x = 75 daysAns.

Q.8. 45 goats can graze a filed in 13 days. How many goats will graze the same field in a day?

Days: graze

13: 45

1: x

 $x = 45 \times 13$

x = 585 goats

Ans.

Objective Exercise

Q.1. Answer the following questions.

What is meant by ratio?

Ans. The numerical comparison between the two quantities of the same kind is called as ratio.

ii. Define the proportion

Ans. The relation of equality of two ratios is called as proportion.

What is meant by extremes of proportion

Ans. The first and fourth elements are called as extremes of proportion

Raylew Exercise 6

- Q.1. Write the following ratios into simplest form.
- i. Rs. 105 and Rs. 150

Sol.

- = 105:150
- 21:30
- = 7:10 Ans.
- ii. 35 m and 119 m

Sol.

- 35:119
- 15:17
- iii. 0.76 m and 1.9 m.

Sol

- = $\frac{76}{100} : \frac{19}{10}$
- $= \frac{76}{100} \times 100 : \frac{19}{10} \times 100$
- = 76:190
- = 38:95 = 2:17 Ans.
- iv. 26 liters and 39 liters

Sol.

- 26:39
- = 2:3 Ans.
- Q.2. Out of 150 eggs in a basket, 25 eggs were found rotten. Find the ratio of
- i. Rotten eggs to the good eggs.
- ii. Rotten eggs to the total eggs.
- iii. Goods eggs to the total eggs.

Sol.

- i. Good eggs = 150 25 = 125
 - Rotten eggs = 25 eggs Ratio is = 25 : 125

1:5

- ii. Rotten : total
 - 25 : 150
 - 5 : 30
 - 11:6
- ii. good : total 125 : 150
 - 5 :6
- Q.3. Out of 75 passengers in a bus, 35 are male, 30 are female and remaining are children. Find out the ratio of the following.
- i. male passenger to the total passengers.
- Female passengers to the mal passengers.
- iii. Children to the total passengers

- i. Male : total
 - 35 : 75
 - 7 :15
- ii. Female: male
 - 30 : 35
 - 6 . 7
- ii. Childran: total
 - 10 : 75
 - 2 : 5

Sol.

Let x be the litres of milk

$$7x = 672$$

$$x = \frac{672}{7} = 96$$

$$x = 96$$
 litres Ans.

Q.8. A farmer has 8 days food for 33 cows. He bought 11 more cows. For how may days will the food be enough?

Sol.

Let x be the no of days

$$33x = 88$$

$$x = \frac{88}{33} = \frac{8}{3} = 2.67$$
 Ans.

Q.9. If 40 workers do a work in 35 days, in how many days will the same work be done by increasing 10 more workers.

Sol.

Let x be the no of days

$$x = \frac{40 \times 35}{50}$$

Q.10. Raheem paid his servant Rs. 750 for 1 week and 3 day. What amount will be pay him for a month of 30 day.

$$10x = 750 \times 30$$

$$x = \frac{750 \times 30}{10}$$

Q.11. A machine starts working in 45 minutes at the temperature of 60 °C. How much time is required to work it at the temperature of 75°C.

$$60 x = 45 \times 75$$

$$x = \frac{45 \times 75}{60}$$

Q.12. 72 persons have enough food for 7 days. But after 1 day they decided to finish the food in 3 remaining days. For it the invited more persons. How many person did they invite.

Sol.

So

$$6x = 72 \times 3$$

$$x = \frac{72 \times 3}{6} = 36 \text{ person}$$

Ans

Sol.

$$3.6 \text{ x} = 1.2 \times 3$$

3.6 x = 3.6

 $7x = 2 \times 49$ 7x = 98

$$x = \frac{98}{7} = 14$$

x = 148:12 ::6:x

Sol.

$$8x=12\times 6$$

$$8x = 72$$

$$x = \frac{72}{9} = 9$$

x = 9

Ans.

100

$$100~\mathrm{x} = 2 \times 150$$

Ans.

$$100 \ x = 300$$

$$\mathbf{x} = \frac{300}{100}$$

x = 3Ans.

Sol.

$$5x = 40 \times 9$$

$$x = \frac{40 \times 9}{5}$$

$$=8\times9=72$$

So, Second element = 72 Ans.

Q.4. What is the fourth proportional of 1, and 4.

Sol.

Let the fourth proportional be x

Then

$$1:3=4:x$$

$$1x = 12$$

$$x = \frac{12}{1}$$

x = 12Ans.

Q.5. Find mean proportional of 4 and 9.

Sol.

Let the mean proportional be x, then

$$4 \times 9 = \dot{x}^2$$

$$x^2 = 36$$
 \Rightarrow $x = 6$

Q.6. If 150 shirt can be stitched on 6 sewing machines in a day how many machines are required to stitch 225 shirts in a day?

Sol.

Let x be the no of machines then

$$150x = 1350$$

$$x = \frac{1350}{150} = 9$$

x = 9 Machines are required Ans.

```
vi. 1 year and 240 day
```

1 day 1 week and 15 days

Sol.

iii. 80 is to 100

Sol.

72 is to 48

Sol.

4000 is to 40

Sol.

vi.
$$\frac{1}{99}$$
 is to $\frac{2}{33}$

Sol.
$$\frac{1}{99}: \frac{2}{33} = \frac{1}{99} \times 99: \frac{2}{33} \times 99 = 1:6$$

Exercise 6.2

Q.1. Find the value of "P" in each of th following.

i.
$$\frac{2}{5} = \frac{P}{20}$$

Sol.
$$2:5 = P:20$$

= $5P = 40$

$$p = \frac{40}{100}$$

$$P = \frac{40}{5}$$

$$P = 8$$

i.
$$\frac{P}{5} = \frac{3}{10}$$

$$P = \frac{15}{10} = 1.5$$

iii.
$$\frac{0.1}{0.4} = \frac{6}{P}$$

$$0.1 P = 0.4 \times 6$$

$$0.1 P = 2.4$$

$$P = \frac{2.4}{0.1} = 24$$

Sol.

$$=\frac{13}{10}:\frac{39}{10}$$

$$=\frac{13}{10}\times 10: \frac{39}{10}\times 10$$

= 13:39

= 13:39

= 1:3 Ans.

ix. .02:0.4

Sol.

$$=$$
 $\frac{2}{100}$: $\frac{4}{10}$

$$= \frac{\bar{2}}{100} \times 1000 : \frac{4}{10} \times 1000$$

= 20:400

= 10: 200

= 5:100

= I:20 Ans.

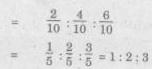
ix.
$$\frac{1}{4}:\frac{1}{6}:\frac{1}{8}$$

Sol.

$$=\frac{1}{4}\times24:\frac{1}{6}\times24:\frac{1}{8}\times24$$

= 6:4:3 Ans.

x. 75;100:125


Sol.

= 15:20:25

= 3:4:5 Ans.

ci. 0.2:0.4:0.6

Sol.

xii.
$$\frac{1}{10}$$
 : $\frac{1}{100}$: $\frac{1}{1000}$

Sol.

=
$$\frac{1}{10} \times 1000 : \frac{1}{100} \times 1000 : \frac{1}{1000} \times 1000$$

= $100 : 10 : 1$ Ans.

Q.4. Write each of the following quantities into ratios and reduce into the simplest form.

i. Rs. 100 and Rs. 250

Sol. =
$$\frac{100}{5}$$
 : $\frac{250}{5}$

= 20:50

= 4: 10

= 2: 5 Ans.

ii. 2 kg and 800 gram

Sol. = 2:800

= 2000:800

= 5:2 Ans.

iii. 1 m and 500 cm

Sol. = 100:500 = 1:5 Ans.

Exercise 6.1

Q.1. Write each of the following inter ratio form.

i. $\frac{3}{4}$	v.	$\frac{5}{6}$	viii.	10 99
Sol. 3:	THE RESERVE TO SERVE THE PARTY OF THE PARTY	5:6	Sol.	10:99
ii. $\frac{2}{7}$ Sol. 2:	vi.	8 13	ix.	a b
iii. $\frac{9}{11}$		8:13	Sol.	a : b
Sol. 9: iv. $\frac{1}{13}$	1711	$\frac{14}{23}$		x y
Sol. 1:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14:23	Sol.	х:у

Q.2. Write each of the following into fraction form.

Q.3. Simplify the following ratios

3:5

Sol. = 1:3 Ans.

25:40

Sol. = 5:8 Ans

iii. $\frac{1}{4} : \frac{1}{6}$

Sol. $=\frac{1}{4} \times 24 : \frac{1}{6} \times 24$ = 6:4 = 5:2 Ans.

iv. $\frac{2}{3}:\frac{1}{9}$

 $\mathbf{SoL} \quad \frac{2}{3} \times 27 : \frac{1}{9} \times 27$

= 18:3 = 6:1 Ans.

 $v. 1:\frac{1}{7}$

Sol. $\frac{1}{1} \times 7 : \frac{1}{7} \times 7$

7:1 Ans.

 $5:\frac{2}{3}$

801

 $\frac{5}{1}:\frac{2}{3}$

 $\frac{5}{1} \times 3 : \frac{2}{3} \times 3$

15:2 Ans.

	A can be eith			
ii.	Algebra is a form of arithmetic.			
iii.	The multiplying factor of a variable is called its			
iv.	The parts of an algebraic expression, separated by the sings + and -, are called			
v	The terms of the san coefficients are called	ne kind on	ly differ by thei	
Ans	wers -			
	i. statement ii.	general	iii. coefficient	
	iv. terms v.			
Q.3.	Tick(v) the cor	rect ans	wer.	
10.75/2	In 4x2, 2 is known as			
	a. base	b.	coefficient	
	c. exponent	d.	term	
ii.	If a = 1, b = 1 and c =	$1, \frac{a^2 + b^2}{3}$	$\frac{+c^2}{}=?$	
	a. 1	Ь.	2	
	c. · $\frac{1}{3}$	d.	$-\frac{1}{3}$	
iii.	In $x + 2$, 2 is known	as,		
	a. coefficient	b.	constant	
	c. variable	d.	exponent	
iv.	$x^2 + x^2 + x + x = ?$			
	a. x ²	b	$x^2 + x$	
	c. $2(x^2 + x)$	d.	$(x^2 + x)^2$	
A	swer:			

Q.5. Find the cost of leveling a triangular playground at the rate of Rs.25.5 per square metre. The base of playground is 88m and height is 66m.

Sol.

Area of triangle
$$= \frac{1}{2} \text{ (Base} \times \text{Height)}$$

$$= \frac{1}{2} (88\text{m}^2 \times 66\text{m}^2)$$

$$= \frac{1}{2} (5808)$$

$$= 2904\text{m}^2 \quad \text{Ans.}$$

Cost of leveling at Rs. 25.5/m2 $=(2904 \times 25.5)$

= Rs.74052 Ans.

Q.6. The base of a triangular shaped field is 246m and height is 125m. How much rice will be produced in this field at the rate of 24 quintal per hectare?

Sol.

Base of field = 246 m
Height of field = 125m
Area of field =
$$(246 \times 125) \times \frac{1}{2}$$

= 15375m²

Area in hectares = $\frac{15375}{10000}$ = 1.5375 ha Rice produced 24 quintals/ hectare

 $= 24 \times 1.5375$

= 36.9 Quintals Ans.

Q.7. A room is triangular in shape. Its base is 9.4m and height is 8.6m. Find the cost of is wooden floor at the rate of Rs.250 per square metre.

Sol.

Base of room =
$$9.4m$$

Height of room = $8.6m$
Area of room = $\frac{1}{2} \times base \times height$
= $\frac{1}{2} 9.4 \times 8.6$
= $40.42m^2$

Cost of wooden floor = 250 × 40.42 = Rs.10105

Q.8. The height of a triangular garden is 54m and base is 92m. Find the number of flowers in the garden if there are 18 flowers on the area of each sq. metre.

Height of garden =
$$54m$$

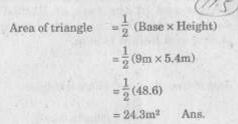
Base of garden = $92m$
Area of garden = $\frac{1}{2} \times 54 \times 92$
= $27 \times 92 = 2484m^2$
No of flowers per $m^2 = 18$
So no of flowers = 18×2484
= $44,712$ Ans.

Area of triangle
$$= \frac{1}{2} \text{ (Base} \times \text{Height)}$$

$$= \frac{1}{2} (20.1 \text{cm} \times 12.8 \text{cm})$$

$$= \frac{1}{2} (257.28)$$

$$= 128.64 \text{cm}^2 \text{ Ans.}$$


Area of triangle
$$= \frac{1}{2} \text{ (Base} \times \text{Height)}$$

$$= \frac{1}{2} (8.25 \text{cm} \times 6.4 \text{cm})$$

$$= \frac{1}{2} (52.80)$$

$$= 26.4 \text{cm}^2 \quad \text{Ans.}$$

Sol.

Area of triangle
$$=\frac{1}{2}$$
 (Base × Height)
 $=\frac{1}{2}$ (25m × 33m)
 $=\frac{1}{2}$ (825)
 $=412.5$ m² Ans.

Q.2. Find the area of triangular floor whose base is 9m and height is 5.4m.

Sol.

Q.3. A triangular sandwich has the same height and base. Find the area of the sandwich if its base is 7.4cm.

Sol.

Area of triangle
$$= \frac{1}{2} \text{ (Base} \times \text{Height)}$$

$$= \frac{1}{2} (7.4 \text{cm} \times 7.4 \text{cm})$$

$$= \frac{1}{2} (54.76)$$

$$= 27.38 \text{cm}^2 \text{ Ans,}$$

Q.4. The base of triangle shaped clock is 28cm and height is 32cm. Find the area of the clock that it will be cover on the wall.

Area of triangle
$$= \frac{1}{2} \text{ (Base} \times \text{Height)}$$

$$= \frac{1}{2} (28\text{cm} \times 32\text{cm})$$

$$= \frac{1}{2} (896)$$

$$= 448\text{cm}^2 \text{ Ans.}$$

Sol.

Area of trapezium =
$$\frac{1}{2} [9m \times 24m]$$

$$= \frac{1}{2} [216]$$

$$= \frac{216}{2} = 108m^2$$

Cost of carpeting = (108×32) = Rs. 3456.Ans.

Exercise 11.5

Q.1. Find the area of the following triangles.

i. Base = 8m, Height = 14m Sol.

Area of triangle
$$= \frac{1}{2} \text{ (Base} \times \text{Height)}$$

$$= \frac{1}{2} (8m \times 14m)$$

$$= \frac{1}{2} (112)$$

$$= 56m^2 \quad \text{Ans.}$$

ii. Base = 19m, Height'= 16m

Sol.

Area of triangle
$$= \frac{1}{2} \; (Base \times Height)$$

$$= \frac{1}{2} (19m \times 16m)$$

$$= \frac{1}{2} (304)$$

$$= 152m^2 \quad Ans. \quad (100)$$

Base = 14.4m, Height = 12.5m

iii. Sol.

Area of triangle $= \frac{1}{2} \text{ (Base} \times \text{Height)}$ $= \frac{1}{2} (14.4 \text{m} \times 12.5 \text{m})$ $= \frac{1}{2} (180)$ $= 90 \text{m}^2 \quad \text{Ans.}$

iv. Base = 6.7m, Height = 10m

Sol.

Area of triangle $=\frac{1}{2} \; (\text{Base} \times \text{Height})$ $=\frac{1}{2} \; (6.7\text{m} \times 10\text{m})$ $=\frac{1}{2} \; (67\text{m}^2)$ $=33.5\text{m}^2 \quad \text{Ans.}$

v. Base = 5.6m, Height = 6.5m

$$\begin{aligned} \text{Area of triangle} &= \frac{1}{2} \; (\text{Base} \times \text{Height}) \\ &= \frac{1}{2} \; (5.6 \text{m} \times 6.5 \text{m}) \\ &= \frac{1}{2} \; (36.4 \text{m}^2) \\ &= 18.2 \text{m}^2 \quad \text{Ans,} \end{aligned}$$

Q.2. Find the area of a trapezium whose length of its parallel sides are 19m and 24m long respectively and distance between them is 14m.

Sol.

Area of trapezium = $\frac{1}{2}$ [perpendicular distance \times sum of length of parallel sides]

$$=\frac{1}{2}[14m \times 43m]$$

$$=\frac{14m\times43m}{2}=7m\times43m$$

= 301m⁹ Ans.

Q.3. A trapezium has 20m and 35m in lengths of its two parallel sides and perpendicular distance is 16m. Calculate its area.

Sol.

Area of trapezium = $\frac{1}{2}$ [perpendicular distance \times sum of length of parallel sides]

$$= \frac{1}{2} [16m \times 55m]$$

$$= \frac{16 \times 55}{2} m^2 = 8 \times 55m^2 = 440m^2$$

Q.4. The perpendicular distance of a trapezium is 8m and the length of parallel sides are 10m and 15m. Calculate the area of trapezium.

Sol.

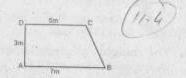
Area of trapezium = $\frac{1}{2}$ [perpendicular distance \times sum of length of parallel sides]

$$= \frac{1}{2} [8m \times 25m]$$

$$= \frac{200}{2} m^2 = 100m^2 Ans.$$

Q.5. A trapezium shaped playground has lengths of its two parallel sides 80m and 120m. Find the cost of its flooring at the rate of Rs.25/m², where the distance between two parallel sides is 45m.

Sol.

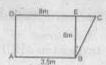

 $\label{eq:Area of trapezium} Area of trapezium = \frac{1}{2} \left[perpendicular \ distance \times \right.$ sum of length of parallel sides]

$$= \frac{1}{2} [45m \times 200m)$$

$$= \frac{9000}{2} m^2 = 4500m^2$$
Cost of flooring = (4500×25)
= Rs.112500Ans.

Q.6. Find the cost of carpeting a trapezium shaped floor at the rate of Rs.32/m², where the lengths of parallel sides of trapezium are 7m and 17m respectively and distance between them is 9m.

ii.

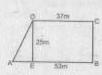

Sol.

Area of trapezium = $\frac{1}{2}$ [perpendicular distance \times sum of lengths of parallel sides]

$$=\frac{1}{2}\left[3m\times12m\right]$$

$$=\frac{36}{2}$$
 m² = 18m², Ans.

ini

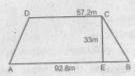

Sol.

 $\label{eq:Area of trapezium} Area of trapezium = \frac{1}{2} \left[perpendicular \ distance \times \right.$ sum of length of parallel sides]

$$=\frac{1}{2}[6m \times 11.5m]$$

$$=\frac{69}{2}=34.5$$
m² Ans.

iv.

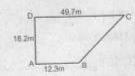

Sol.

Area of trapezium = $\frac{1}{2}$ [perpendicular distance \times sum of length of parallel sides]

$$=\frac{1}{2}\left[25\text{m}\times90\text{m}\right)$$

$$=\frac{2250}{2}=1125m^2$$
 Ans.

٧.



Sol.

Area of trapezium = $\frac{1}{2}$ [perpendicular distance \times sum of length of parallel sides]

$$=\frac{1}{2}[33m \times 150m] = \frac{4950}{2} = 2475m^2$$
 Ans.

vi.

Sol.

Area of trapezium = $\frac{1}{2}$ [perpendicular distance × sum of length of parallel sides]

$$=\frac{1}{2}[18.2m \times 62m] = \frac{1}{2}(1128.4)$$

= 564.2m² Ans.

Height
$$=\frac{\text{Area}}{\text{Base}}$$
 $=\frac{405}{27}$ $=15\text{m}$

Q.5. Find the base of a parallelogram when its height is 16m and area is 560m³.

Sol.

Area of a parallelogram = Base × height

Base =
$$\frac{\text{frea}}{\text{height}}$$

= $\frac{560}{16}$
= 35m

Ans.

Q.6. Find the cost of leveling a plot of 200m base and 140m height at the rate of Rs.4.50/m².

Sol.

Area of plot = Base
$$\times$$
 Height
= 200m \times 140m

 $=28000 \, \mathrm{m}^2$

Cost of leveling a plot

 $=28000\times4.5$

=Rs.126,000Ans.

Q.7. Find the cost of ploughing a parallelogram shaped field at the rate of Rs.6/m² whose base is 175m and height is 125m.

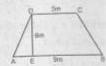
Sol

 $=21875m^2$

Cost of ploughing at the rate of Rs. $6/m^2 = (21875 \times 6) = Rs.131250$ Ans.

Q.8. The height of parallelogram floor is 25.8m and base is 36.5m. Find the cost of tiles used on floor at rate or Rs. 460/m² that will be used on the floor.

Sol.


Area of parallelogram = Base
$$\times$$
 height
= 36.5m \times 25.8m
= 941.7m²

Cost of flooring tiles at Rs. $460/m^2$ = (460×941.7) = Rs. 433,182 Ans.

Exercise 11.4

Q.1. Calculate the area of each of the following trapezium ABCD.

1.

Sol.

Area of trapezium = $\frac{1}{2}$ [perpendicular distance × sum of length of parallel sides]

$$=\frac{1}{2}[6m \times 14m]$$

 $=\frac{84}{2}m^2 = 42m^2$ An

Q.5. A 3m wide road is all around on the outside of a 125m long and 60m wide garden. Find the cost of repairing the road at the rate of Rs. 150/m2.

Sol.

Inner length = 125m

Inner width = 60m

Inner area = inner length × inner width-

 $125m \times 60m$

7500m²

Outer breadth = inner breadth +2(width of road)

=60m + 2(3m)

=60 + 6m

=66m

Outer length = 125 + 2(3)

= 125 + 6 = 131 m

Outer area = outer length × outer breadth

 $=131m \times 66m$

 $=8646m^{2}$

Area of road = outer area - Inner area

 $=8646m^2-7500m^2$

 $= 1146 m^2$

Cost of repairing the road at the rate of Rs. 150/m2

 $= 150 \times 1146$

= Rs.171900Ans.

Exercise 11.3

Q.1. Find the area of a parallelogram shaped pool whose base is 17m and height is 9m.

Sol.

Area of parallelogram = Base × height

 $= 17m \times 9m$

 $= 153 m^2$

Q.2. Find the height of a parallelogram shaped hall when its base is 12m and the area of the hall is 216m2.

Sol.

Area of parallelogram = Base × height

 $Height = \frac{Area}{Base}$

= 18m Ans.

Q.3. Find the area of a parallelogram whose base is 75m and height is 50m.

Sol.

Area of a parallelogram = Base × Height

 $=75m \times 50m$

 $= 3750 \text{m}^2$

Q.4. Find the height of a parallelogram whose base is 27m and area is 405m2.

Sol.

Area of a parallelogram = Base × Height

$$=96m-2(3.5m)$$

=96m - 7m

= 89m

Inner breadth=outer length - 2(width of border)

=50m-2(3.5m)

=50m-7m

=43m

Inner area = inner length × inner breadth

 $=89m \times 43m$

 $=3827m^{2}$

Area of shaded border = outer area - inner area

= 4800m² - 3827m

= 973m² Ans.

Q.3. Find the area of a 4m wide running track constructed inside of a park, when the length and breadth of the park are 150m and 80m respectively.

Sol.

Width of track = 4 m

Outer length of park = 150m 4

Outer width of pank = 80m

Outer area of park = 150m × 80m

 $= 12000 \text{m}^2$

Now

Inner length of park = 150-2(4)

= 150 - 8

=142m

• Inner width of park = 80 - 2(4)

=80-8=72m

Inner are of park = 142m × 72m

 $=10224m^2$

So area of 4m wide running track

=12000 - 10224

 $= 1776 m^2$

Q.4. A room is 8m long and 5m wide. Find the cost of the flooring tiles at the rate of Rs.40/m2 that used in verandah of 1.5m width which surrounded the room.

Sol.

Inner length = 8m

Inner breadth = 5m

Inner area = $8 \times 5m^2 = 40m^2$

Outer length = Inner length + 2(width of border)

=8m + 2(1.5m)

= 8m + 3m = 11m

Outer breadth = outer length + 2(width of border)

= 5m + 2(1.5m)

=5m + 3m = 8m

Outer Area = Outer length × Outer breadth

= 11m × 8m

 $=88m^{2}$

Area of verandah = Outer area - Inner area

 $=88m^2-40m^2=48m^2$

Cost of flooring at the rate of Rs.40/m2

 $=48 \times 40$

= Rs. 1920 Ans.

```
Outer length = inner length + 2(width of border)
                                                                      Area of shaded border = outer area - inner area
                  =100m + 2(2m)
                                                                                         = 9576m2 - 8400
                  = 100m + 4m = 104m
                                                                                         = 1176 m^2
Outer breadth = outer breadth +2(width of border)
                                                                iii. Outer length 80m
                                                                      Outer breadth = 45m
                  =50m + 2(2m)
                                                                      Width of the border = 4m
                 =50m + 4m = 54m
                                                                Sol.
Outer area = outer length × outer breadth
                                                                      Outer area = outer length × outer breadth
           =104m \times 54m
                                                                                   =80m \times 45m
           = 5616 m<sup>2</sup>
                                                                                   =3600 \,\mathrm{m}^2
Area of border = outer area - Inner Area
                                                                      Inner length = outer length - 2(width of border)
                 =5616 - 5000
                                                                                   =80m-2(4m)
                  =616m^{2}
                                                                                   = 80m - 8m
                                                                                   =72m
                                                                      Inner breadth=outer breadth-2(width of border)
     Inner length = 120m
                                                                                   =45m-2(4m)
     Inner breadth = 70m
                                                                                   =45m-8m
     Width of the border = 3m
                                                                                 = 37 \text{m}
Sol.
                                                                      Inner area= inner length × inner breadth
     Inner Area = Inner length × inner breadth
                                                                                   =72m \times 37m
                  = 120m × 70m
                                                                                   = 2664 \text{m}^2
                                                                      Area of shaded border = outer area - inner area
                  =8400 \text{m}^2
     Outer length = Inner length + 2(width of border)
                                                                                          = 3600m<sup>3</sup> - 2664m<sup>2</sup>
                                                                                          = 936m2 Ans.
                  = 120m + 2(3m)
                                                                iv. Outer length = 96m
                  = 120 + 6m = 126m
                                                                       Outer breadth = 50m
     Outer breadth=Inner breadth+2(width of border)
                                                                       Width of the border = 3.5m
                  =70m + 2(3m)
                                                                Sol.
     Outer width = 70m + 6m = 76m
                                                                       Outer area = outer length × outer breadth
     Outer area = outer length × outer breadth
                                                                                   =96m \times 50m
                 = 126 \text{m} \times 76 \text{m}
                                                                                    =4800 \,\mathrm{m}^2
                  9576m<sup>2</sup>
                                                                       Inner length = outer length -2(width of border)
```

Sol.

Area of rectangular ground = length × breadth

 $=45m\times30m$

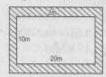
 $=1350 \text{m}^2$

Cost of repairing the garden = (1350×50)

= Rs.67500 Ans.

Perimeter of rectangular garden

 $= 2 \times (length + breadth)$


 $=2 \times (45m + 30m)$

= 2(75m) = 150m

Cost of constructing a wall around it = 150 × 425' = Rs.63750Ans.

Exercise: 11.2

Q.1. Find the area of the border (shaded portion) from the following figures.

a. Area of Inner portion = (Inner length × Inner breadth)

= 20m × 10m

= 200m²

Outer length= inner length + twice of width of the outer

Portion

=20m + 2(2m)

=20m + 4m

=24m

Outer breadth = Inner breadth + twice of width of outer portion

=10 m + 2(2m)

=10 + 4m = 14m

Total Area = Outer length × outer breadth

= 24m × 14m

 $= 336m^2$

Area of the shaded portion = total Area - Area of Inner portion

= 336m² - 200m² = 136 m² Ans.

b. Outer length of rectangle = 25m Outer width of rectangle = 15 m

Outer width of rectangle = 15 ii

= Outer length×outer width

 $= 25 \times 15 \text{m}^2$

 $= 375m^{2}$

Now inner length = 25 - 2(2.5)

=25-5=20m

Inner width = 15 - 2(2.5)

=15-5=10m

Inner area = Inner length × Inner width

 $=20m \times 10m = 200m^2$

Area of border = 375 - 200 = 175m²

- Q.2. Find the area of the following borders.
- i. Inner length = 100m

100

Inner breadth = 50m

Width of the border = 2m

Sol.

Inner Area = inner length × inner Breadth

= 100 m × 50m

 $= 5000 \text{ m}^3$

$$= 21 \text{m} \times 21 \text{m}$$

= 441 m^2

Perimeter of square

= $4 \times \text{length}$ = $4 \times 21 \text{m}$

= 84m

Q.6. The perimeter of a square shaped room is 36m. Find the cost of tiling the room at the rate of Rs.182.5 per squaré metre.

Sol.

Perimeter of square = 36m

 $4 \times length = 36m$

 $length = \frac{36}{4}$

length = 9m

Area of square = 1

= length × length

 $=9m \times 9m$

 $= 81 m^2$

Cost of tiling the room at the rate of Rs. 182.5 per sq. m = Rs.182.5

Total cost of tiling = $81 \times 182.5 = Rs.14782.5$

Q.7. Find the cost of leveling a play ground at the rat of Rs. 150/m² whose length is 33m and breadth is 22m. Also find cost of fencing the play ground at the rate of Rs. 100/m.

Sol.

Area of rectangular park = length × Breadth

 $=33\text{m}\times22\text{ m}$

 $= 726 \text{ m}^2$

a connected of recommendate park

=2×(length+ breadth)

 $=2\times(33\mathrm{m}+22\mathrm{m})$

 $=2\times55m$

= 110 m

Cost of leveling the play ground at Rs.150/m 2 = (726×150) = Rs.108900

Cost of fencing the play ground at rate of 100/m = (100×10) = Rs.11000 Ans.

Q.8. The length of a side of a square shaped field is 48m. Find the cost of ploughing the field at the rate of Rs.25/m² and cost of fencing the field at the rate of Rs. 18/m.

Sol.

Area of square field = length × length

 $=48m\times48m$

 $= 2304 \text{m}^2$

Cost of ploughing field at the rate of Rs. 25/m²

 $= (2304 \times 25) = \text{Rs}.57600$

Perimeter of square field = 4 × length

 $=4\times48m$

= 192m

Cost of fencing the field at the rate of Rs. 18/m

 $=(192 \times 18)$

= Rs.3456 Ans.

Q.9. A garden is 45m long and 30m wide. Find the cost of repairing the garden at the rate of Rs.50/m² and cost of constructing a wall around it at the rate of Rs. 425/m. Sol.

Area of square = length × length

 $= 17 \mathrm{cm} \times 17 \mathrm{cm}$

 $=289\mathrm{cm}^2$

Perimeter of square = $4 \times length$

 $=4 \times 17$ cm =68cm

vii.

Sol

Area of rectangle = length × breadth

 $= 11.2 \text{cm} \times 6.5 \text{cm} = 72.8 \text{cm}^2$

Perimeter of rectangle = $2 \times (length + breadth)$

 $=4\times(11.2\mathrm{cm}+6.5\mathrm{cm})$

= 2(17.7cm) = 35.4cm

viii.

Sol.

Area of rectangle = length × breadth

= 7.6cm $\times 3.8$ cm

 $= 28.88 \text{cm}^2$

Perimeter of rectangle = $2 \times (length + breadth)$

 $= 2 \times (7.6cm + 3.8cm)$

= 2(11.4cm)= 22.8cm

ix.

Sol.

Area of Square = length × length

 $=4.5cm \times 4.5cm$

= 20.25cm²

· Perimeter of Square = 4 xlength

 $=4\times4.5~\mathrm{cm}=18\mathrm{cm}$

Alexandre C.

Q.2. Find the length of a rectangular park whose breadth is 15m and area is 675m².

Sol.

We know that

Area of rectangular park = length \times breadth

$$Length = \frac{Area}{breadth} = \frac{675m^2}{15m} = 45m$$

Q.3. The perimeter of square garden is 12km. Find its area.

Sol.

Perimeter of square = $4 \times length = 12km$

 $4 \times length = 12 \text{ km}$

$$Length = \frac{12}{4} km = 3kin$$

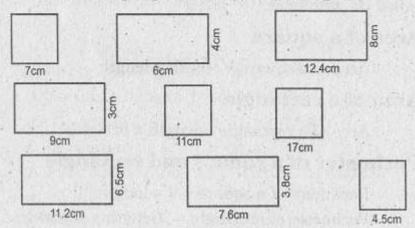
Area of square = length \times length = $3 \times 3 = 9 \text{km}^2$

Q.4. Find the breadth of a swimming pool whose length is 18m and area is 198m².

Sol.

Area of rectangle = length × breadth

$$= \frac{\text{area}}{\text{length}}$$
$$= \frac{198\text{m}^2}{18\text{m}} = 11\text{m}$$


Q.5. Find the area and perimeter of a square shaped garden whose measure of side is 21m.

Sol.

Area of square = length × length

```
ii.
Sol.
        Area of rectangle = length × breadth
                                = 6 \text{cm} \times 4 \text{cm}
                                = 24 \text{cm}^2
        Perimeter of rectangle = 2 \times (length + breadth)
                                        =2\times(6cm+4cm)
                                        = 2 \times (10 \text{cm})
                                        = 20cm
iii.
Sol.
        Area of rectangle = length × breadth
                                = 12.4 \text{cm} \times 8 \text{cm}
                                = 99.2 cm^{2}
                                        = 2 \times (length + breadth)
        Perimeter of rectangle
                                        = 2 \times (12.4 \text{cm} + 8 \text{cm})
                                        = 2 \times (20.4 \text{cm})
                                         = 40.8cm Ans.
 iv.
 Sol.
         Area of rectangle = length \times breadth
                                 =9cm \times 3cm
                                 = 27 cm^{2}
         Perimeter of rectangle = 2 \times (length + breadth)
                                 = 2 \times (9 \text{cm} + 3 \text{cm})
                                 = 2 \times 12cm = 24cm Ans.
 V.
 Sol.
                                 = length \times length
         Area of square
                                 = 11cm × 11 cm
                                  = 121 \text{ cm}^2
          Perimeter of square = 4 × length
                                  = 4 \times 11cm = 44cm Ans.
```

Q.1. Find the area and perimeter of the following squares and rectangles.

i. Sol.

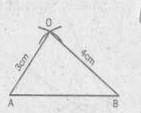
Area of square $= length \times length$

 $=7cm \times 7cm$

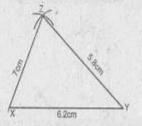
 $= 49 \text{ cm}^2$

Perimeter of square

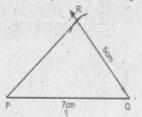
 $=4 \times length$

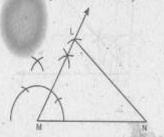

 $=4 \times 7$ cm

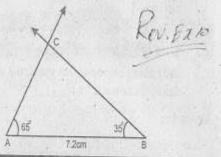
= 28cm


Q.2.	Fill in the blanks.		1 Ex.10		
i.	A is a part of a line which has two distinct end points.				
ii.	The unit of measuring an angle is called				
iii.	A straight line has an a	ngle of _			
iv.	Only three elements car one of them must be a _	constru	act a triangle but		
Ansv	wer:				
i. line	e segment ii. degree	iii. 18	0° iv. side		
Q.3.	Tick () the correct	t answ	ers		
i,	In a line AB, the right its.	bisecto	r passes through		
	a. point A	b	mid-point		
	c. point B	d.	none		
ii.					
	a. one	b.	two		
	c. three	d.	four		
iii.	A right bisector interse	cts the li	ine at angle of		
	a. 60°	b.	450		
	·c. 90°	d. ,	180°		
iv.	The sum of internal always	angles	of a triangle is		
	a. 90°	b.	180°		
	c. 45°	d.	360°		
Ans	wers:	A Second			
	i. c ii. b	iii. c	iv. b		
	•				

Que consuluce une tonowing unangios.

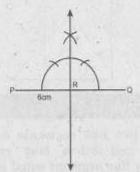

i. $\overline{\text{mAB}} = 5\text{cm}$, $\overline{\text{mBO}} = 4\text{cm}$, $\overline{\text{mAO}} = 3\text{cm}$


ii. $\overline{mXY} = 6.2cm$, $\overline{mYZ} = 5.8cm$, $\overline{mZX} = 7cm$


iii. $\overline{mPQ} = 7cm$, $\overline{mQR} = 5cm$, $m\angle Q = 60^{\circ}$

iv. mLM = 4.2cm, mMN = 6.4cm, m/M = 75°

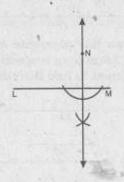
v. mAB=7.2cm, m∠A = 65°, m∠B = 35°


Objective Exercise 10

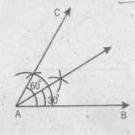
- Q.1. Answer the following questions.
- i. Write the meaning of the word geometry?
- Ans. The word "geometry" means measurement of earth.
- ii. What is meant by right bisector of a line?
- Ans. A right bisector can be a line, ray or a line segment which divides another line segment into two equal parts, perpendicularly.
- iii. What are congruent angles?
- Ans. The two angles of the same measurement are called congruent angles.
- iv. How many elements are required to construct a triangle?
- Ans. Three elements are required to construct a triangle.
- v. Define a line segment.
- Ans. A line segment is a part of a line which has two distinct end points.

Q.3. Draw a line segment PQ of length 6cm.

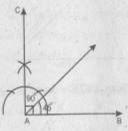
Take a point R on it and draw a perpendicular passing through it.


Sol.

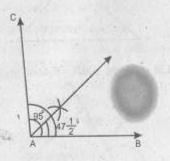
Q.4. Draw a line segment LM of length 5cm.

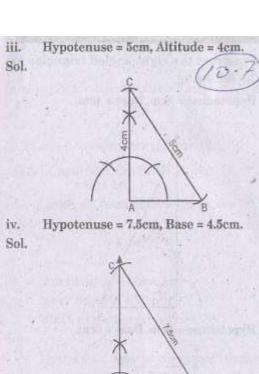

Take a point N outside of it and draw a perpendicular on the line passing through the point.

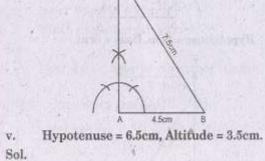
Sol.

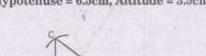


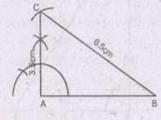
Q.5. Draw the following angles and bisect them

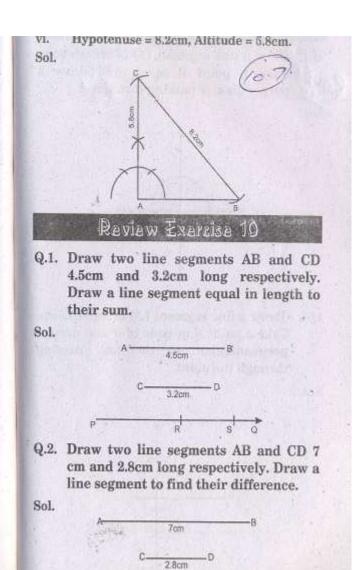

i. 60°

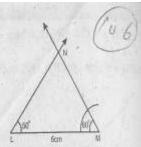


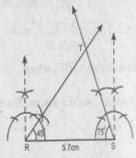

ii. 90

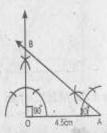



iii. 95°








Q.6. Construct the Δ RST, when

i. $m\overline{RS} = 5.7cm \;, \; m\angle R = 45^{\circ}, \; m\angle S = 75^{\circ}$ Sol.

Q.7. Construct the $\Delta AOB,$ when

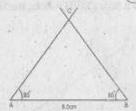
i. $m\overline{OA} = 4.5 cm$, $m\angle O = 90^{\circ}$, $m\angle A = 30^{\circ}$ Sol.

Exercise 10.7

q.1. Construct the right angled triangles for the following.

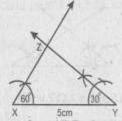
Hypotenuse = 8cm, Base = 4cm.

Sol

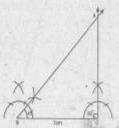


ii. Hypotenuse = 9cm, Base = 6cm.

Sol.


iii. ${}^{\circ}m\overline{AB} = 8.3cm$, $m\angle BAC = 85^{\circ}$. Sol.

Exercise 10.6


Q.1. Construct the AXYZ when

i.
$$m\overline{XY} = 5cm$$
, $m\angle X = 60^{\circ}$, $m\angle Y = 30^{\circ}$ Sol.

Q.2. Construct the ΔABC when

i.
$$m\overline{BC} = 7cm$$
, $m\angle B = 45^{\circ}$, $m\angle C = 90^{\circ}$ Sol.

Q.3. Construct the APQR, when

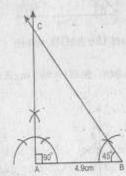
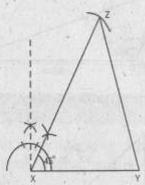
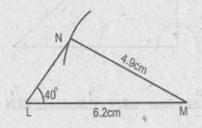

i. $\overrightarrow{mPQ} = 6.8cm$, $\overrightarrow{m}\angle P = 120^{\circ}$, $\overrightarrow{m}\angle Q = 45^{\circ}$ Sol.

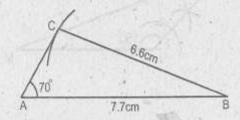
Fig page 31

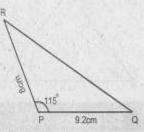
Q.4. Construct the AABC, when


i.
$$m\overline{AB} = 4.9 cm$$
, $m\angle A = 90^{\circ}$, $m\angle B = 60^{\circ}$ Sol.

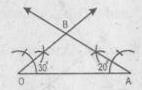

Q.5. Construct the ALMN, when

i.
$$mLM = 6cm$$
, $m\angle L = 50^{\circ}$, $m\angle M = 60^{\circ}$

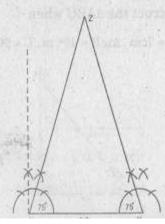

v. $m\overline{XY} = 5.5 \text{cm}$, $m\overline{YZ} = 6.6 \text{cm}$, $m\angle XYZ = 45^{\circ}$ Sol.


vi. $m\overline{LM} = 6.2cm$, $m\overline{MN} = 4.9cm$, $m\angle LMN = 40^{\circ}$ Sol.

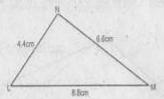
vii. $\overline{mAB} = 7.7cm$, $\overline{mBC} = 6.6cm$, $m\angle ABC = 70^{\circ}$ Sol.



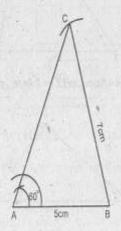
viii. $m\overline{PQ} = 9.2cm$, $m\overline{PR} = 8cm$, $m\angle QPR = 115^{\circ}$. Sol.



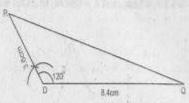
Q.2. Draw the following isosceles triangles.


i. $m\overline{OA} = 5.5cm$, $m\angle AOB = 30^{\circ}$. Sol.

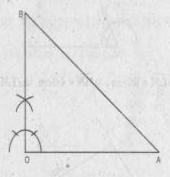
ii. $\overline{mYX} = 6.3cm$, $m\angle XYZ = 75^{\circ}$ Sol.

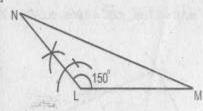


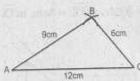
v. __mLM=8.8cm, mMN = 6.6 cm, mNL = 4.4cm Sol.

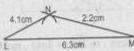


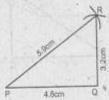
Exercise 10.5


- Q.1. Construct the following triangles by using a protractor, a pair of compasses and a ruler.
- i. $m\overline{AB} = 5cm$, $m\overline{BC} = 7cm$, $m\angle ABC = 60^{\circ}$. Sol.

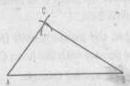

ii. mPQ = 8.4cm, mPR = 3.6cm, m∠QPR = 120°. Sol.


iii. $m\overline{OA} = 8cm$, $m\overline{OB} = 6cm$, $m\angle AOB = 90^{\circ}$. Sol.

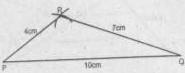

iv. mLM = 9em, mLN = 6.5em, $m\angle MLN = 150$ °. Sol.


iii. $m\overline{BC} = 9cm$, $m\overline{AC} = 12$ cm, $m\overline{AB} = 6$ cm Sol.

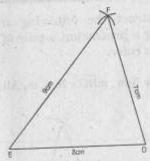
iv. $\overline{mLM} = 6.3$ cm, $\overline{mMN} = 4.1$ cm, $\overline{mLN} = 2.2$ cm Sol.

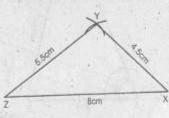


v. $\overrightarrow{mPQ} = 4.8$ cm, $\overrightarrow{mQR} = 3.2$ cm , $\overrightarrow{mRP} = 5.9$ cm Sol.

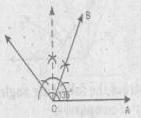


Q.2. Construct the following triangles

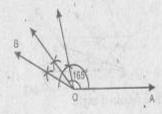

i. $\overrightarrow{mAB} = 6cm$, $\overrightarrow{mBC} = 5cm$, $\overrightarrow{mAC} = 4cm$ Sol.


ii. $m\overline{PQ} = 10cm$, $m\overline{QR} = 7cm$, $m\overline{PR} = 4cm$ Sol.

iii. $\overline{mDE} = 8cm$, $\overline{mEF} = 9cm$, $\overline{mDF} = 7cm$ Sol.

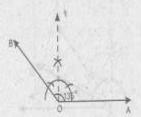

iv. $m\overline{X}\overline{Y} = 4.5cm$, $m\overline{Y}\overline{Z} = 5.5cm$, $m\overline{Z}\overline{X} = 8cm$ Sol.

iii.
$$\left(67\frac{1}{2}\right)^0$$


Sol.

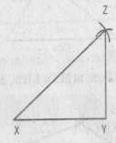
∠OAB is the required angle.

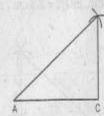
iv. 165°


Sol.

∠OAB is the required angle.

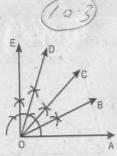
v. 135°


Sol.

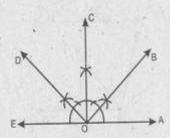

∠OAB is the required angle.

Exercise 19.4

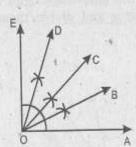
- Q.1. Construct the triangle if possible.
- i. $m\overline{XY} = 5$ cm , $m\overline{YZ} = 8$ cm, $m\overline{ZX} = 2$ cm Sol.


ii. $m\overline{AB} = 6cm$, $m\overline{BC} = 4cm$, $m\overline{AC} = 2cm$ Sol.

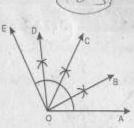
Steps


- i. Draw a 4cm long line segment BC.
- Consider the point B as centre and draw an arc of radius 6cm.
- ,iii. Now consider the point C as centre and draw an arc of radius 2 cm.
- iv. Finally join the points A with the point B and again the point A with the point C.

ΔABC is the required triangle.

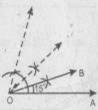

180°

iii. Sol,

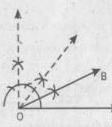


88 0

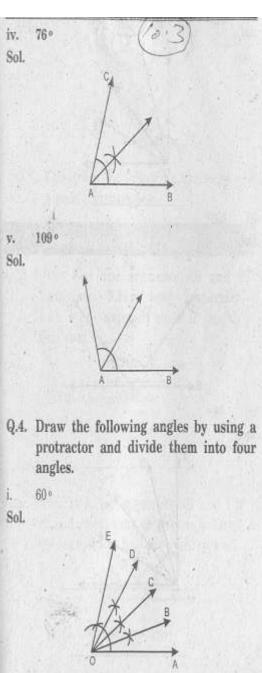
iv. Sol.

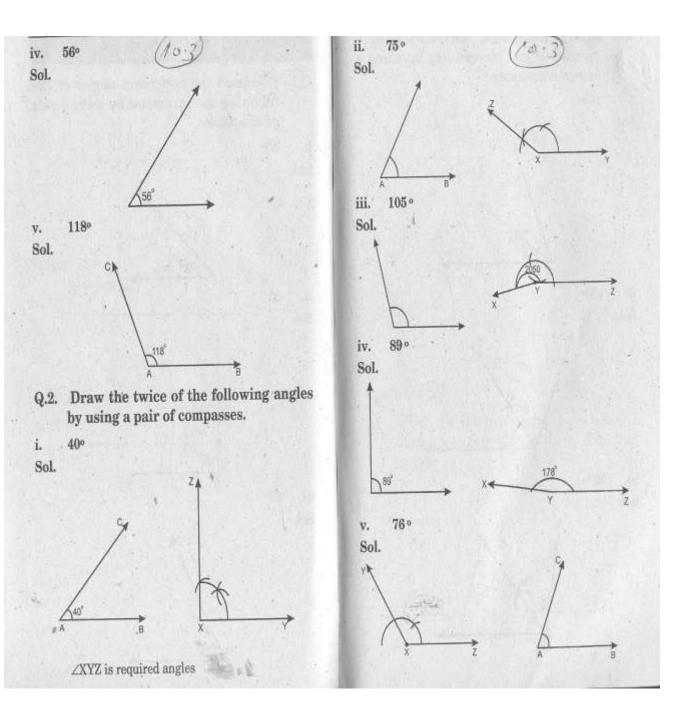

v. Sol. 140 0

Q.5. Construct the following angles by using a pair of compasses.


150 i.

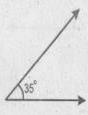
Sol.


∠OAB is required angle.


Sol.

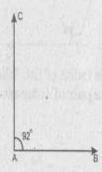
ZOAB is the required angle.

Q.3. Draw the following angles by using a protractor and bisect them by using a Sol. pair of compasses. 450 Sol. y. Sol. ii. Sol. 120° iii. Sol. Sol


iii. Sol. Steps Same as in (i) iv. Sol. Steps Same as in (i)

Exercise 10.3

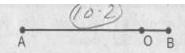
Q.1. Construct the congruent angles of the following measurements by using a pair of compasses.


. 350

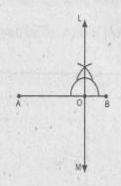
Sol.

ii. 92º

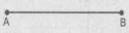
Sol.

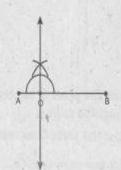


iii. 67º


Sol.

iii.

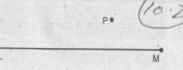

Sol.


Steps

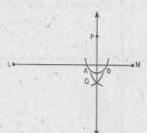
Same as in (i) and (ii)

iv.

Sol.



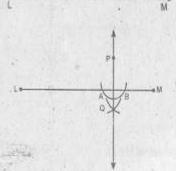
Steps


Same as in (i) and (ii)

Q.3., Draw perpendiculars from the points P to the line segment LM.

i.

Sol.


Steps

- Consider the pint P as centre and draw an arc of a suitable radius that will cut the line LM at any two points A and B.
- Consider the point A as centre and draw an arc of suitable radius.
- iii. Repeat the process with B as centre.
- iv. Join P and Q.

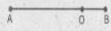
ii.

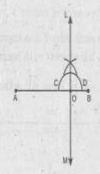
p.

Sol.

Steps

Same as in (i)




Draw two arcs of radius $> \frac{1}{2}$ LM with centre at L on each side of line segment.

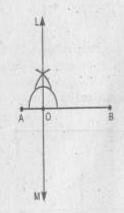
Repeat the process with centre at M.

Join A and B. Thus AB is the right bisector.

Q.2. Draw perpendiculars from the point O to the line segment AB.

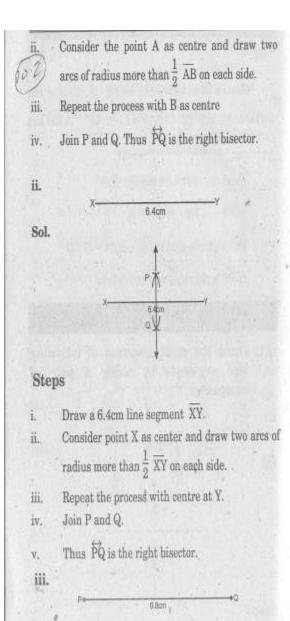
Steps

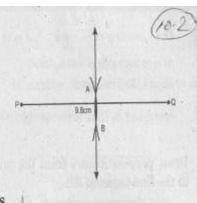
- Consider the point O as centre and draw an arc of suitable radius that will cut the line AB at any two points C and D respectively i.e., $m \overline{OC} = m \overline{OD}$.
- Consider the point C as centre and draw an arc of radius more than OC as given below.


- Now consider the point D as centre and repeat the last process.
- iv. Join the points L and O. Draw a line that will given a perpendicular to the given line.

Thus LM is required perpendicular.

ii.


Sol.

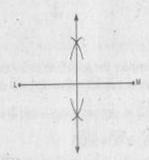


Steps

- Consider the point O as centre and draw an arc of suitable radius
- Consider the point C as centre and draw an arc of radius more than OC.
- Repeat the process with D as center.
- Join the points L and O.

LM is required perpendicular.

Steps .


Sol.

- i. Draw a line segment \overline{PQ} of length 9.8 cm.
- ii. Draw two arcs of radius $> \frac{1}{2}$ \overline{PQ} with central at P on each side of line segment.
- iii. Repeat the process with centre at Q.
- iv. Join A and B. Thus $\stackrel{\longleftrightarrow}{AB}$ is the right bisector.

iv.

L+ 8.2cm

Sol.

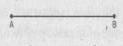
Steps

Draw a line segment LM of length 8.2 cm.

(0.1)

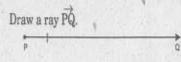
Similarly, measure the length of \overrightarrow{CD} and cut another segment \overrightarrow{RS} from \overrightarrow{PQ} i.e. \overrightarrow{mRS} = \overrightarrow{mCD} but here R lies between P and S.

From the above, we can see that

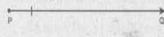

$$\overline{mPR} = \overline{mPS} - \overline{mRS}$$

But we know that m PR = m AB, m RS = m CD

Then
$$\overline{MPR} = \overline{MPR} = \overline{MPR$$

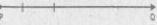

Thus, \overline{PR} is the required line segment.

ii.


Sol.

Step-1

Step-2


Measure the length of \overline{AB} and cut a segment \overline{PR} of the same length, i.e. $m \ \overline{PR} = m \ \overline{AB}$.

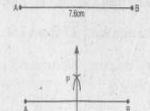
Setp-3

Similarly, measure the length of \overrightarrow{CD} and cut another segment \overrightarrow{RS} from \overrightarrow{PQ} i.e. m $\overrightarrow{RS} = m$ \overrightarrow{CD} but here R lies between P and S.

From the above, we can see that

$$m \overline{PR} = m \overline{PS} - m \overline{RS}$$

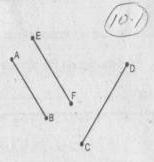
But we know that $m \overline{PR} = m \overline{AB} - m \overline{CD}$


m RS is the required line segment

Exercise 19.2

Q.1. Draw the right bisectors of following line segments by using a pair of compasses.

i.


Sol.

Steps

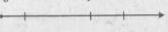
i. Draw a 7.6cm long line segment AB.

iv.

Step-1

Draw a ray PQ.

Step-2


Measure the length of line segment \overline{AB} with the help of a pair of compasses.

Setp-3

Remove the pair of compasses from \overline{AB} and cut a segment \overline{PR} from the ray \overline{PQ} of same length i.e. m \overline{PR} =m \overline{AB}

Step -4

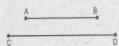
Similarly measure the length of \overrightarrow{CD} and cut another segment \overrightarrow{RS} from \overrightarrow{PQ} i.e. m \overrightarrow{RS} = m \overrightarrow{CD}

Step-5

Similarly measure the length of \overline{EF} and cut another segment \overline{ST} from \overline{PQ} i.e. m $\overline{ST}=m$ \overline{EF}

From the above, we can say that

$$m \overline{PT} = m \overline{PR} + m \overline{RS} + m \overline{ST}$$


But we know, $m \overline{PR} = m \overline{AB}$, $m \overline{RS} = m \overline{CD}$, $m \overline{ST} = m \overline{EF}$

Then
$$\overline{PT} = m \overline{AB} + m \overline{CD} + m \overline{EF}$$

Thus, PS is required line segment.

Q.2. Draw the line segments to find the difference of measure of following pairs of line segments.

i.

Sol.

Step-1

Draw a ray PQ.

Step-2

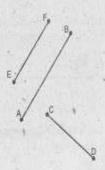
Measure the length of \overline{AB} and cut a segment \overline{PR} of the same length, i.e. $\overline{PR} = m \ \overline{AB}$.

(10.1)

Similarly measure the length of \overrightarrow{CD} and cut another segment \overrightarrow{RS} from \overrightarrow{PQ} i.e. $\overrightarrow{mRS} = \overrightarrow{mCD}$

From the above, we can say that

 $m \overline{PS} = m \overline{PR} + m \overline{RS}$


But we know that $m \overline{PR} = m \overline{AB}$,

 $m.\overline{RS} = m.\overline{CD}$

Then $\overline{mPS} = m\overline{AB} + m\overline{CD}$

Thus, PS is required line segment.

iii.

Step-1

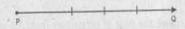
Draw a ray PQ.

Step-2

Measure the length of line segment AB with the help of a pair of compasses.

Setp-3

10.0


Remove the pair of compasses from \overline{AB} and cut a segment \overline{PR} from the ray \overline{PQ} of same length i.e. $m \ \overline{PR} = m \ \overline{AB}$

Step -4

Similarly measure the length of \overrightarrow{CD} and cut another segment \overrightarrow{RS} from \overrightarrow{PQ} i.e. $\overrightarrow{mRS} = \overrightarrow{mCD}$

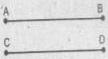
Step-5

Similarly measure the length of \overline{EF} and cut another segment \overline{ST} from \overline{PQ} i.e. m \overline{ST} = m \overline{EF}

From the above, we can say that

$$m \overline{PT} = m \overline{PR} + m \overline{RS} + m \overline{ST}$$

But we know, $m \overline{PR} = m \overline{AB}$, $m \overline{RS} = m \overline{CD}$,


 $m\overline{ST} = m\overline{EF}$

Then $\overline{PT} = m \overline{AB} + m \overline{CD} + m \overline{EF}$

Thus, $\overline{\text{PS}}$ is required line segment.

Exercise 10.1

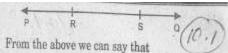
Q.1. Draw the line segment to find the sum of measure of the following pairs of line segments.

Sol.

Step-1

Step - 2

Measure the length of line segment $\overline{\mbox{AB}}$ with the help of a pair of compasses.


Step -3

Remove the pair of compass from AB and cut a segment \overrightarrow{PR} from the ray \overrightarrow{PQ} of same length i.e m \overrightarrow{PR} = m AB.

Step -4

Similarly, measure the length of CD and cut another segment \overline{RS} from \overline{PQ} i.e. m $\overline{RS}=m$ \overline{CD}



m PS = m PR + m RS

But we know that, $m \overline{PR} = m \overline{AB}$ and $m \overline{RS} =$ m CD then m PS = m AB + m CD

Thus PS is required line segment.

ii.

Sol.

Step-1

Step-2

Measure the length of line segment AB with the help of a pair of compasses.

Step-3

Remove the pair of compasses from AB and cut a segment PR from the ray PQ of same length i.e. m PR = m AB

Q.Z.		ne blanks	. (1)	Japan.
i.	The weigh	ing balance	is an excel	lent example
ii.	A relation	ship of _ is called an	equation.	etween two
iii.	The value	of unknown of the equat	of an equa	tion is called
îv.	with the	ion which c greatest exp inear equati	ponent of _	ngle variable
v.	A number one side to	or a variabl	e can be tranide by chan	nsferred fron ging its sign
Ans	wers:			
	ii. Equa	ion	- ii. iv,	Equality 1
	v. trans			
	Tick(v)			
i.			ation $x - 1 =$	-1 is
1700	a, 0	b. 1	c. 2	d. 2
ii.			ve use the si	gn.
110-1	a. +	b1	c. =	d. Z
iii.	$If \frac{x-1}{2} = 1$, then $x = ?$	200	
	a. 0	b. +1	c. 2	d. 3
iv.	The staten my brother equation as	's age" can l	e is equal to be written in	the twice of
-	a. $x + y = 2$	b. x = 2y	c. $\frac{x+y}{2}$	$d. \frac{x}{2} = \frac{y}{2}$
Answ	er:			
	i. a	ii. c	iii. d	iv. b

But number are consecutive, the next numbers will be

$$x + 1, x + 2, x + 3$$

Now according to the condition

$$x + (x + 1) + (x + 2) + (x + 3) = 266$$

$$x + x + 1 + x + 2 + x + 3 = 266$$

$$x + x + x + x = 266 - 1 - 2 - 3$$

$$4x = 260$$

$$x = \frac{260}{4}$$

$$x = 65$$

Therefore,

$$1st$$
 number = $x = 65$

$$2^{nd}$$
 number = $x + 1 = 65 + 1 = 66$

$$3^{rd}$$
 number = $x + 2 = 65 + 2 = 67$

$$4^{th}$$
 number = $x + 3 = 65 + 3 = 68$

Check: Sum of number =
$$65 + 66 + 67 = 266$$

Q.5. The numerator of a fraction is larger than its denominator by 4. If we add 1 to its denominator, the fraction becomes $\frac{3}{2}$. Find the fraction.

Sol.

Therefore, numerator =
$$x + 4$$

According to the condition

$$\frac{(x+4)}{(x+1)} = \frac{3}{2}$$

$$x + 4 = \frac{3}{2} \times (xx + 1)$$

$$2\times(x+4)=3\times(x+1)$$

$$2x + 8 = 3x + 3$$

$$2x - 3x = 3 - 8$$

$$-x = -5$$

$$x = 5$$

Denominator =
$$x = 5$$

Numerator =
$$x + 4 = 5 + 4 = 9$$

Fraction =
$$\frac{9}{5}$$

Ans.

Objective Exercise 9

- Q.1. Answer the following questions.
- i Define an equation.
- Ans. A relationship of equality between two algebraic expressions is called an equation.
- ii. Which equation is called a linear equation?
- Ans. The equation which contains a single variable with the greatest exponent of 1 is called linear equation.
- iii. What is meant by solving an equation.
- Ans. The value of unknown in an equation is called solving an equation.
- iv. What are four steps for solving a problem by using an equation?
- Ans. i. What is the required thing?
 - ii. Represent the required thing by variable.
 - iii. Write an equation according to the statement
 - iv. Solve the equation and check the solution.

v.
$$3(x-4)-4(2x+3)=2(x+5)+1$$
 (2v B1, P
Sol.
$$3x-12-8x-12=2x+10+1$$
 $3x-8x-2x=10+1+12+12$
 $-7x=85$

$$x=-\frac{35}{7}$$
vi. $2(x-2)+3(x-3)=3(x-5)-4(x-8)$
Sol.
$$2x-4+3x-9=3x-15-4x+32$$
 $5x-13=-x+17$
 $5x+x=17+13$
 $6x=30$

Q.2. If a number is doubled and then increased by 7, it becomes 13. Find the number.

Sol.

Let the number be xAccording to the condition 2x + 7 = 132x = 13 - 72x = 6

 $x = \frac{6}{2}$

 $x = \frac{30}{6}$

x = 5

x = 3

Thus the number is 3.

Q.3. The length of a rectangle of a rectangle is 6 m larger than three times of its breadth. If its perimeter is 148 m. Find its length and breadth.

Sol.

Let breath of rectangle = x

Breath = x

Then by given condition

Length = 3x + 6

So

· Perimeter of rectangle = 2 (Lngth + Breadth)

$$2(x+3x+6)=148$$

$$2(4x+6) = 148$$

$$8x + 12 = 148$$

$$8x = 148 - 12$$

$$8x = 136$$

$$x = \frac{136}{8}$$

Breadth = 17m

Length =
$$3x + 6$$

$$=3(17)+6$$

$$=51+6$$

Lenght =57 m Ans.

Q.4. The sum of four consecutive numbers is 266. Find the numbers.

Sol.

Let 1st number be x

As given,

Review Exercise 9

Q.1. Solve the following equations.

i.
$$3x + \frac{2}{5} = 2 - x$$

$$3x + x = 2 - \frac{2}{5}$$

$$4x = \frac{10 - 2}{5}$$

$$4x = \frac{8}{5}$$

$$x = \frac{8}{5 \times 4}$$

$$x = \frac{2}{5}$$

ii.
$$\frac{x}{4} + \frac{x}{6} = \frac{x}{2} - \frac{3}{4}$$

$$\frac{x}{4} + \frac{x}{6} \cdot \frac{x}{2} = -\frac{3}{4}$$

$$\frac{3x + 2x - 6x}{12} = -\frac{3}{4}$$

$$-\frac{x}{12} = -\frac{3}{4}$$

$$\frac{x}{12} = \frac{3}{4}$$

$$x = \frac{3}{4} \times 12$$

$$x = 3 \times 3$$

iii. $\frac{5x-4}{8} - \frac{x-3}{5} = \frac{x+6}{4}$ Rev. E1. 8

Sol.

$$\frac{5(5x-4)-8(x-3)}{40}=\frac{x+6}{4}$$

$$5(5x-4) - 8(x-3) = \frac{(x+6)}{4} \times 40 = 10(x-6)$$

$$25x - 20 - 8x + 24 = 10x + 60$$

$$25x - 8x - 10x = 60 - 24 + 20$$

$$25x - 18x = 80 - 24$$

$$7x = 56$$

$$x = \frac{56}{7}$$

$$x = 8$$
 Ans.

iv.
$$\frac{2}{3}(x-5) - \frac{1}{4}(x-2) = -\frac{3}{2}$$

Sol.

$$\frac{2(x-5)}{3} - \frac{(x-2)}{4} = -\frac{3}{2}$$

$$\frac{8(x-5)-3(x-2)}{12} = -\frac{3}{2}$$

$$8(x-5)-3(x-2)=-\frac{3}{2}\times 12$$

$$8x - 40 - 3x + = -18$$

$$8x - 3x = -18 - 6 + 40$$

$$5x = 16$$

$$5x = 16$$

 $x = \frac{16}{5}$ Ans.

$$8y + y = 45$$
,
 $9y = 45$ \Rightarrow $y = \frac{45}{9}$ \Rightarrow $y = 5$
Put $y = 5$ in (i)
 $x + 5 = 45$
 $x = 45 - 5$
 $x = 40$

So price of book = Rs.40, price of pen = Rs.5
Ans.

Q.7. Qasim Hussain opened his account book. He observed that the sum of the two page, in front of him is 93. Find the page numbers in front of him. (Hint: Suppose the one page number is x, then other will be x + 1)

Sol.

Suppose one page number = xThen the other will be x+1According to the condition x+(x+1)=93x+x+1=932x=93-12x=92

 $x = \frac{92}{2}$

x = 46

The other number = x + 1

Put x = 46

x 46 + 1

Ans.

x = 47

Q.8. Imran Farhat and Abdul Razzaq enhanced 69 runs in the score of Pakistan, if the score of Abdul Razzaq is double than the score of Imran Farhat. Find that how many runs Abdul Razzaq require to complete his half century?

Sol.

Let runs scored by Imran Farhat = x Runs scored by Abdul Razzaq = y According to given condition,

x + y = 69

As given y = 2x

Put y = 2x above

x + 2x = 69

3x = 69

 $x = \frac{69}{3}$

x = 23

funs scored by Imran Farhat = 23

As, Abdul RAzzaq scores double runs than Imran Farhat, runs scored by Abdul Razzaq = 23×2

= 46

Therefore Abdul Razzaq requires '4' more runs to compute his half century, i.e. 46 + 4 = 50 Ans.

$$x + y = 12$$

(9.2)

As given, one number is twice of the other.

Then

$$x + 2x = 12$$

$$3x = 12$$

$$\dot{x} = \frac{12}{3}$$

 $\bar{x} = 4$

Put x = 4 in (i)

$$x + y = 12$$

$$4 + y = 12$$

$$y = 12 - 4$$

So, number are 4 and 8.

Q.4. The product of two numbers is 72. Find the other number when the one number is 9.

Sol.

Let two numbers be x and y According to the statement

$$xy = 72$$

As given, one number is 9.

Let x = 9

$$(9) y = 72$$

$$y = \frac{72}{9}$$

Q.5. The difference of the two numbers is 6. Find the numbers when the one number is $\frac{1}{4}$ th of the other.

Sol.

$$x - \frac{x}{4} = 6$$

$$\frac{4x-x}{4}=6$$

$$\frac{3x}{4} = 6$$

$$3x = 6 \times 4$$

$$3x = 24$$

one number = 8

$$2^{nd}$$
 no. $=\frac{x}{4}=\frac{8}{4}=2$ Ans.

Q.6. Sabeena bought a pen and a book for Rs. 45. The book was 8 times more expensive than the pen. What are the prices of book and pen?

Sol.

Let the prices of book and pen be x and y respectively.

According to the statement

As given, the book is 8 times more expensive than the pen. So

Put x = 8y in (i)

$$x = \frac{1.5}{3} = \frac{15/10}{3} = \frac{15}{10 \times 3} = \frac{1}{30} = \frac{1}{2}$$

$$x = 0.5$$
Verification
$$\frac{3(0.5) - 1.5}{0.9 - 1.5(0.5)} = 0$$

$$\frac{1.5 - 1.5}{0.9 - 0.75} = 0$$

$$\frac{0}{0.15} = 0$$

$$0 = 0$$
L.H.S = R.H.S

Exercise 9.2

Q.1. Find the value of m by putting n = 2 in each of the followings.

i.
$$2m - n = 12$$
 $m = 2 \times \frac{9}{2}$ Sol. Put $n = 2$ $2m - 2 = 12$ $2m = 12 + 2$ $2m = 14$ Sol. Put $n = 2$ $\frac{14}{m} = \frac{14}{2}$ $m = 7$ ii. $\frac{m}{n} = \frac{9}{2}$ Sol. Put $n = 2$ $\frac{m}{2} = \frac{9}{2}$ Sol. $m = 9 - 3m$ $m + 3m = 9$ $m = 9 - 3m$ $m + 3m = 9$ $m = 9 - 3m$ $m + 3m = 9$ $m = 9 - 3m$ $m = 9 -$

Q.2. The price of the toy gun decreased by Rs.7. Find the original price when the new price is Rs.18.

Sol.

Let original price = x According to the statement Discounted price = x - 7 = 18x = 18 + 7

x = 25

Original price of gun = Rs.25

Q.3. The sum of the two numbers is 12 when the one number is twice of the other. (Hint: suppose the one number is x then there is 2x)

Sol.

Let the numbers be x and y According to the statement

xvi. $\frac{6a-4}{2a+2} = 2$	$\frac{1}{x} = 9 \times \frac{10}{9}$	$x = \frac{3}{1.5} = \frac{3}{1.5/10} = \frac{3 \times 10}{15} = \frac{30}{15}$
Sol. 6a - 4 = 2(2a + 2) 6a - 4 = 4a + 4 6a - 4a = 4 + 4 2a = 8	$x = 10$ Verification $0.9(10) - 3 = 6$ $\frac{9}{10}(10) - 3 = 6$	x = 2 Verification 1.5(2) + 4 = 7 3 + 4 = 7 7 = 7
$a = \frac{8}{2}$ $a = 4$	9 - 3 = 6' 6 = 6 L.H.S = R.H.S.	L.H.S = R.H.S xx. 0.25x + 1.5 = 7.5 Sol.
Verification $\frac{6(4)-4}{2(4)+2}=2$	xviii. $0.1x + 2.5 = 3$ Sol. $0.1x = 3 - 2.5$	0.25x = 7.5 - 1.5 0.25x = 6.0 6 6×100
$\frac{24-4}{8+2} = 2$ $\frac{20}{10} = 2$	$0.1 x = 0.5$ $x = \frac{0.5}{0.1}$ $x = 5$	$x = \frac{6}{0.25} = \frac{6}{25/100} = \frac{6 \times 100}{25}$ $x = 24$ Verification
2 = 2 L.H.S = R.H.S	Verification $0.1(5) + 2.5 = 3$	0.25(24) + 1.5 = 7.5 6 + 1.5 = 7.5 7.5 = 7.5
xvii. $0.9 \times -3 = 6$ Sol. $0.9 \times = 6 + 3$	$\frac{1}{10}(5) + 2.5 = 3$ $\frac{1}{2} + 2.5 = 3$	LHS = RHS xxi. $\frac{3x - 1.5}{0.9 - 1.5x} = 0$
$0.9x = 9$ $\frac{9}{10} x = 9$	2 0.5 + 2.5 = 3 3 = 3 LH.S = R.H.S	Sol. $\frac{3x - 1.5}{0.9 - 1.5x} = 0$
xix. 1.5x + 4 = 7 Sol.		$3x - 1.5 = 0 \times (0.9 - 1.5x)$ 3x - 1.5 = 0
1.5x = 7 - 4 1.5x = 3	The state of	3x = 0 + 1.5 3x = 0 + 1.5

xii.
$$\frac{x}{2} + \frac{3x}{2} + \frac{x}{2} + \frac{5x}{2} = 25$$

Sol.

$$\frac{x+3x+x+5x}{2}=25$$

$$\frac{10x}{2} = 25$$

$$5x = 25$$

$$5x = 25$$
$$x = \frac{25}{5}$$

$$x = 5$$

Verification

$$\frac{5}{2} + \frac{3(5)}{2} + \frac{5}{2} + \frac{5(5)}{2} = 25$$

$$\frac{5}{2} + \frac{15}{2} + \frac{5}{2} + \frac{25}{2} = 25$$

$$\frac{5+15+5+25}{2}=25$$

$$\frac{50}{2} = 25$$
$$25 = 25$$

$$25 = 25$$

$$25 = 25$$
L.H.S = R.H.S.
xiii. $\frac{x}{2} = \frac{7}{2}$
Sol.

Sel.

$$\frac{x}{2} = \frac{7}{2}$$

$$x = \frac{7}{2} \times 2$$
$$x = 7$$

$$x = 7$$

Verification

$$\frac{7}{2} = \frac{7}{2}$$

xiv.
$$2m-5=\frac{1}{2}+\frac{5}{2}$$

Sol.

$$2m - 5 \mp \frac{1}{2} + \frac{5}{2}$$

$$2m = \frac{1}{2} + \frac{5}{2} + 5$$

$$2m = \frac{1 + 5 + 10}{2}$$

$$2m = \frac{16}{2}$$

$$m = \frac{8}{2}$$

$$m = 4$$

Verification

$$2(4) - 5 = \frac{1}{2} + \frac{5}{2}$$

$$8-5=\frac{1+5}{2}$$

$$3 = \frac{6}{2}$$

$$3 = 3$$

xv.
$$\frac{a}{2} + \frac{a}{2} = 3a + 14$$

Sol.

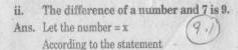
$$\frac{a+a}{2} = 3a + 14$$

$$\frac{2a}{2} - 3a = 14$$

$$a - 3a = 14$$

$$a = \frac{14}{-2}$$

Verification


$$-\frac{7}{2} + \left(-\frac{7}{2}\right) = 3$$

$$(-7) + 14$$

$$\frac{-7-7}{2} = -21 + 14$$

$$\frac{-14}{2} = -7$$

$3-3=0$ $0=0$ iii. $x-3=5$ Sol. $x-3=5$ $x=5+3$ $x=8$ Verification $8-3=5$ $5=5$ L.H.S = R.H.S iv. $2x+2=14$ Sol. $2x+2=14$ $2x=14-2$ $2x=12$ $x=\frac{12}{2}$ $x=6$ Verification $2(6)+2=14$ $12+2=14$ $14=14$ L.H.S = R.H.S v. $12x=36$ Sol. $12x=36$ $x=\frac{36}{12}$	x = 3 Verification 12(3) = 36 36 = 36 L.H.S = R.H.S iv. $\frac{x}{6} = 3$ $x = 3 \times 6$ x = 18 Verification $\frac{18}{6} = 3$ 3 = 3 L.H.S = R.H.S vii. $x + 2 = 2x - 1$ Sol. x + 2 = 2x - 1 x - 2x = -1 - 2 -x = -3 x = 3 Verification 3 + 2 = 2(3) - 1 5 = 6 - 1 5 = 6 - 1 5 = 5 L.H.S = R.H.S	viii. $\frac{2y}{3} = -8$ Sol. $2y = -8 \times 3$ 2y = -24 $y = -\frac{24}{2}$ y = -12 Verification $\frac{2(-12)}{3} = -8$ -8 = -8 L.H.S = R.H.S ix. $x + 4 + x - 2 = 0$ Sol. x + x + 4 - 2 = 0 x + x = 2 - 4 2x = -2 x = -1 Verification (-1) + (-1) + 4 - 2 = 0 -1 - 1 + 4 - 2 = 0 -2 + 4 + 2 = 0 4 - 4 = 0	0 = 0 L.H.S = R.H.S x. m+1+2m+5 = 0 Sol. m+2m+1+5 = 0 m+2m=-6 3m = -6 m = $\frac{-6}{3}$ = -2 Verification -2+1+2(-2)+5 = 0 -2+1-4+5=0 -6+6=0 0 = 0 L.H.S. = R.H.S xi. 2x-4=x Sol. 2x-x=4 x=4 Verification 2(4)-4=4 8-4=4 L.H.S = R.H.S
---	--	--	--

x - 7 = 9

iii. Twice of a number is 16.

Ans. Let the number = xAccording to the statement 2x = 16

iv. one third of the number is 2

Ans. Let the number = xAccording to the statement.

$$\frac{1}{3} x = 2$$

v. A number increased by 2 is 4.

Ans. Let the number =xAccording to the statement. x+2=4

vi. A number decreased by 4 is 3.

Ans. Let the number = xAccording to the statement x-4=3

vii. Twice of a number increased by 3 is 17.

Ans. Let the number = x_4 According to the statement 2x + 3 = 17

viii. My age and my brother's age is 20 years by adding.

20

Ans. Let my age = x

My brother's age = y

According to the statement x + y = 20

x. Twice of my age increased by 7 years is my mother's age.

Ans. Let my age = x

Let my mother's age = y

According to the statement

2x + 7 = y

 The price of 6 pens is equal to price of of book.

Ans. Let price of one pen =x
Price of one book = y
According to given statement
6x = y

Q.2. Solve the following equations and verify the solution.

Verification

X = -0

Put $x = -\frac{A}{2}$ in given statement

$$2 + 5(-\frac{1}{2}) = -\frac{1}{2}$$

Verification

$$3(1) - 3 = 0$$

a = 1

3a - 3 = 0

3a = 3

CHAPTER 9

LINEAR EQUATIONS

Equation

A relationship of equality between two algebraic expressions is called an equation.

Linear Equation in one variable

The equation which contains a single variable with the greatest exponent of 1, is called linear equation in one variable.

Solution of the equation

The value of unknown in the equation is called the solution or root of the equation.

' Four steps for solving a problem by using an equation.

- i. What is the required thing?
- ii. Represent the required thing by a variable.
- iii. Write an equation according to the statement.
- iv. Solve the equation and check the solution.

Exercise 9.1

- Q.1. Write an equation for each of the followings.
- i. The sum of a number and 8 is 14.
- Ans. Let the number = x

According to the statement x + 8 = 14

Raview Exercise 11

Q.1. Find the perimeter of a square whose area of 676cm².

Sol.

Area of square = 676m2Area of square = Length × Length $676 = 26 \times 26$

1.6

 $\begin{aligned} & Length \ of \ square = 26 m \\ & Perimeter \ of \ square = 4 \times Length \\ & = 4 \times 26 \end{aligned}$

= 108 m

Q.2. A room is 4.5m long and 4m wide. The floor of the room is to be covered with square marble tiles with length of 0.5m. Find the cost of flooring at the rate of Rs. 500 per tile.

Sol.

Length of room = 4.5m

Width of room = 4m

Length of tile = 0.5m

No of tiles to be used for room are found as

No of tiles used to over length = 4.5 = 9

No of tiles used to cover length $=\frac{4.5}{0.5}=9$

No of tiles used to cover width = $\frac{4}{0.5}$ = 8

Total tiles used for floor = $9 \times 8 = 72$ Cost of one tile = Rs.500

Total cost of 72 tiles = 72×500

= Rs.3600

Ans.

Q.3. Find the cost of repairing of a 2m wide jogging track at the rate of Rs. 50per square meter. constructed inside of a park, when the length and the breadth of the park are 100m and 60m respectively.

Sol.

Outer length = 100mOuter breadth = 60mOuter area = $190m \times 60m = 6000m^2$ Inner length = outer length - 2(Width of border)= 100m - 2(2m)

= 100 - 4m = 96m

Inner breadth=outer breadth-2(width of border)

= 60 - 2 (Width of border)

=60-2(2)=60-4=56m

 $=96m^2 \times 56m^2 = 5376m^2$

Area of border = outer area - inner area

=6000m² -5376m² =624m²

Cost of repairing = (624 × 50)

= Rs.31200 Ans.

Q.4. Calculate the cost of flooring 1m wide verandah at the rate of Rs.100/m² which surrounded a 6m long and a 4m wide room.

Sol.

Inner leagth = 6m Inner width = 4m Inner area = Inner width × Inner leagth

 $=4m \times 6m = 24m^3$